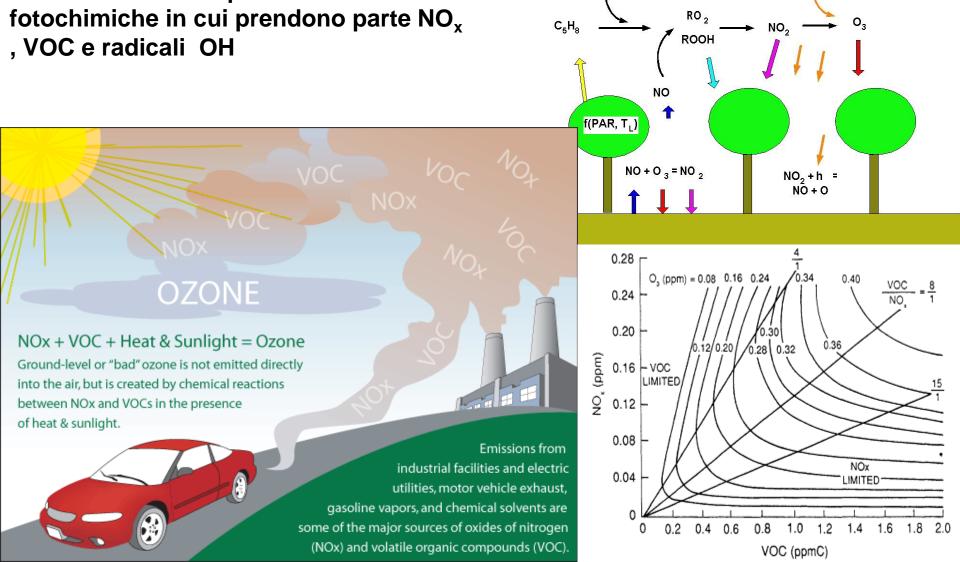
Gli alberi migliorano la qualità dell'aria delle nostre città **Silvano Fares** CNR-Istituto per la BioEconomia

Cambiamenti climatici + smog fotochimico

Global Temperatures

Annual Average


Five Year Average

I prodotti principali dello smog fotochimico sono: ozono (O_3) , nitrati di perossiacile (PAN), aldeidi e chetoni, perossido (H_2O_2) e particelle fini (< 1 µm)

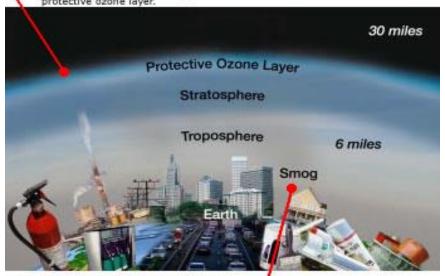
La fotochimica porta alla formazione di ozono

OH

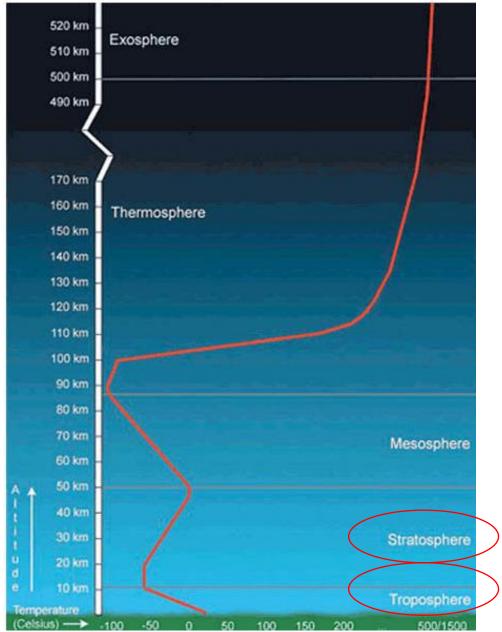
L'ozono si forma a partire da reazioni

Ozono in bassa troposfera: una crescente minaccia per le piante

L`ozono della stratosfera protegge la vita sulla terra dai dannosi raggi ultravioletti (UV)

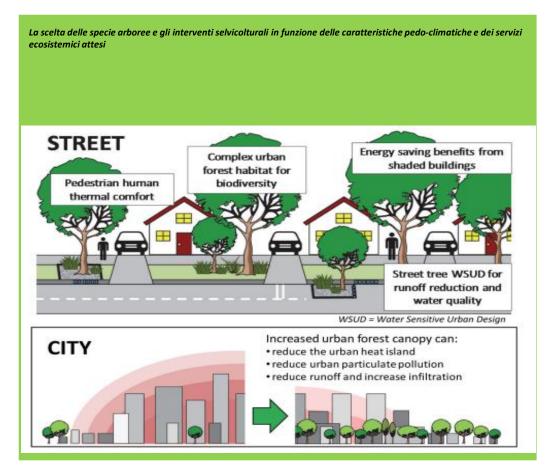

L'ozono nella troposfera e' dannoso!

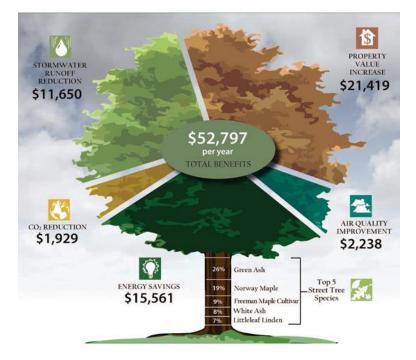
Ossidante per gli esseri viventi, gas a effetto serra


Too little there...Many popular consumer products like air conditioners and refrigerators involve CFCs or halons - during either manufacture or use. Over time, these chemicals damage the earth's protective ozone layer.

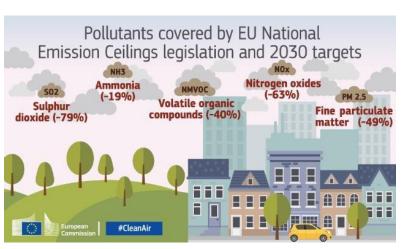
Too much here...Cars, trucks, power plants and factories all emit air pollution that forms

ground-level ozone, a primary component



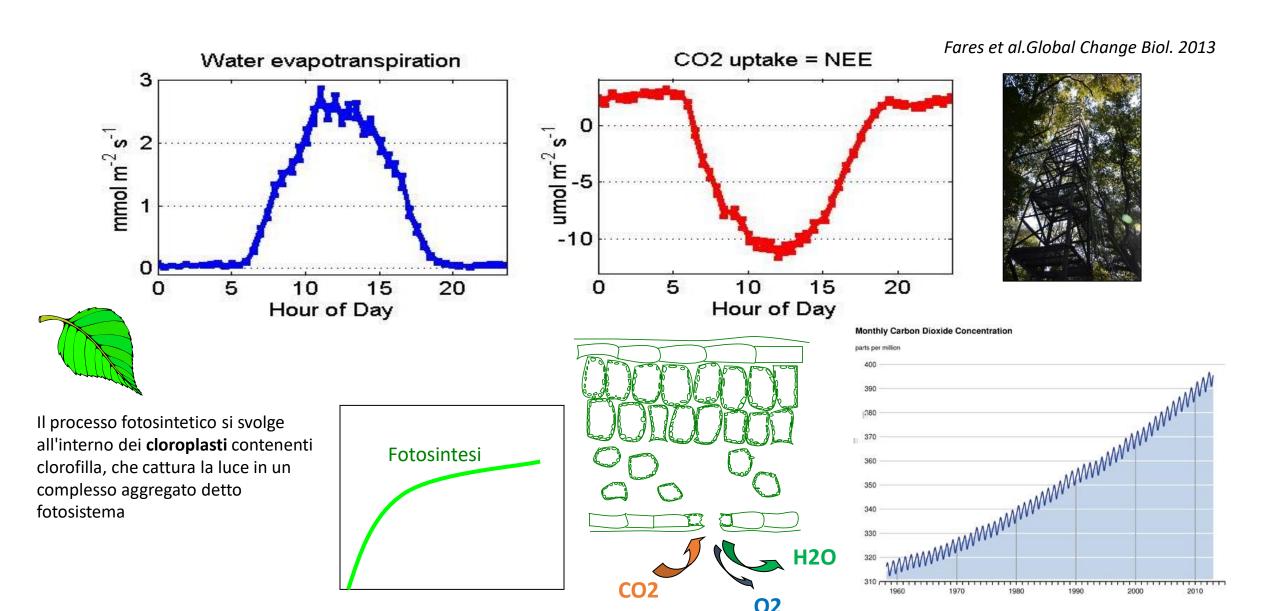

EPA (2010)

Perchè studiamo i boschi urbani...

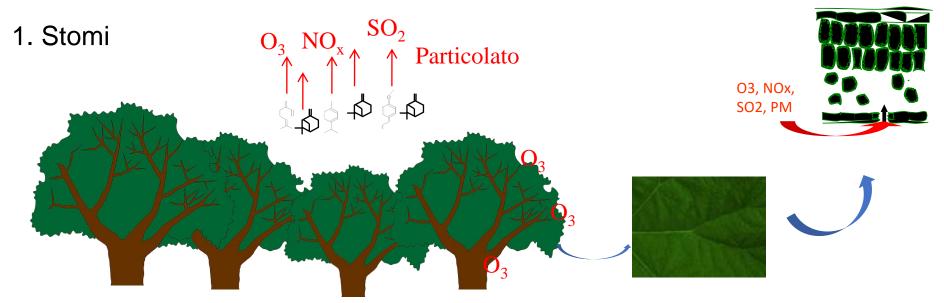

• Gli alberi in città contribuiscono a igliorare la qualità della vita

Perchè studiamo i boschi urbani...

- Aumenta l'attenzione da parte delle istituzioni nei confronti del verde urbano
- Nuove politiche per incentivare la messa a dimora di milioni di alberi


Il verde urbano ha implicazioni positive sui cicli geochimici di acqua e carbonio

E` stato stimato che 100 alberi maturi ogni anno:


- intercettano circa 284,000 litri di acqua piovana, ciò rappresenta un notevole aiuto nel controllo di eventi meteorici estremi
- rimuovono 14 tonnellate di CO2 attraverso il sequestro nei tessuti legnosi, e grazie alla capacità di ridurre i consumi per la climatizzazione degli edifici

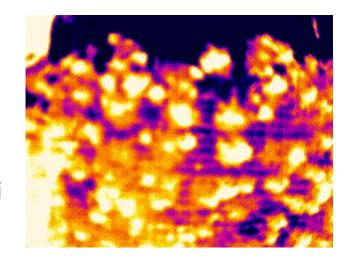
L' andamento giornaliero nell'assimilazione di carbonio

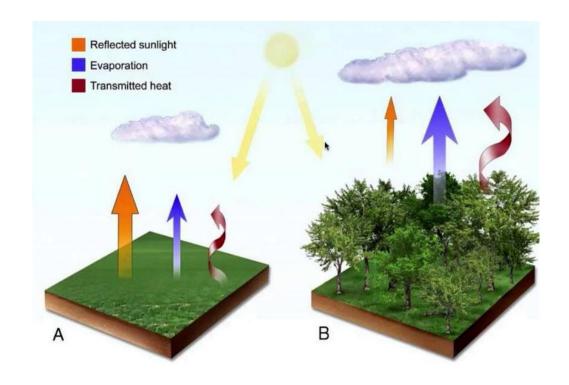
Gli alberi riducono l'inquinamento dell`aria

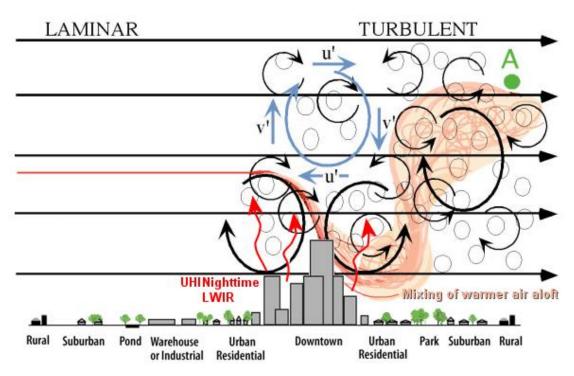
Vie di rimozione degli inquinanti :

Molti alberi sono in grado di <u>assorbire l'ozono</u>; alberi come Acero, Betulla, Quercia possono assorbire ogni ora fino a 0.2-0.6 mg di ozono per dm2 di area fogliare

2. Deposizione sulle cuticole e corteccia

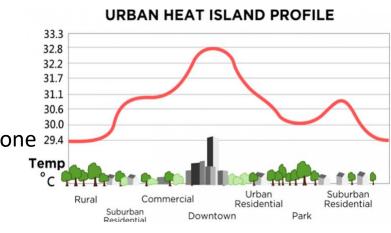

Gli alberi funzionano come <u>filtri</u> per molti composti attraverso deposizione umide e secche

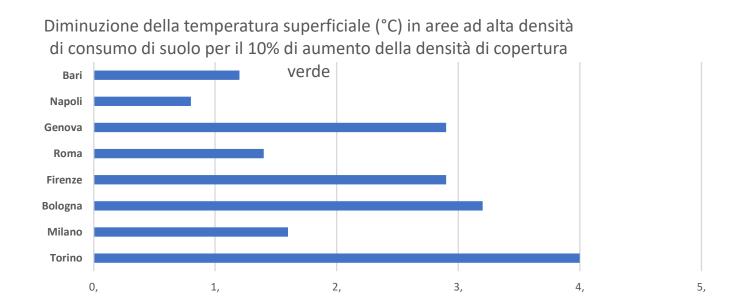

3. Rimozione in fase gassosa: ruolo dei composti organici volatili


100 alberi in un anno rimuovono 460 kg di inquinanti per anno, in particolare ozono e particolato!

Gli alberi modificano il microclima nelle città

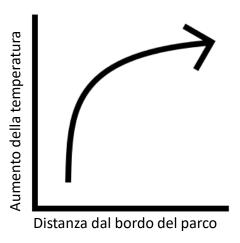
- L'evapotraspirazione sottrae calore e può rinfrescare l'aria
- Piante ed edifici contribuiscono ad aumentare turbolenza atmosferica che aiuta a dissipare energia (e a disperdere inquinanti)
- L'ombreggiamento fa risparmiare fino al 32% sui costi di climatizzazione
- La riduzione della velocità del vento limita l'infiltrazione di aria fredda negli edifici durante l'inverno





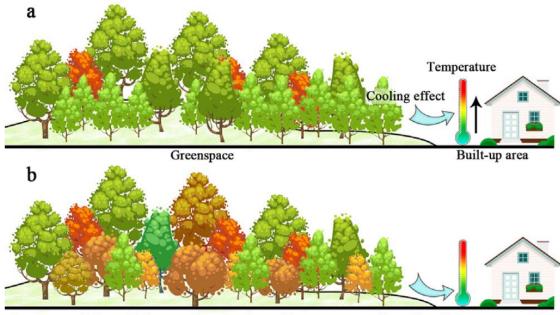
Le foreste urbane riducono l'effetto «isola di calore»

- In Italia le persone che vivono in città sono 42 milioni, circa il 70%.
- Studio con immagini satellitari su 10 città metropolitane: intensificare del 10% la dotazione di aree verdi può portare fino al 4% di abbassamento di temperatura!
- Gli interventi di mitigazione dell'effetto «isola di calore» andrebbero maggiormente orientati verso aree ad elevata densità di consumo di suolo e bassa copertura arborea.



Fonte: Morabito M, Crisci A, Guerri G, Messeri A, Congedo L, Munafò M (2021). Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Science of the Total Environment.

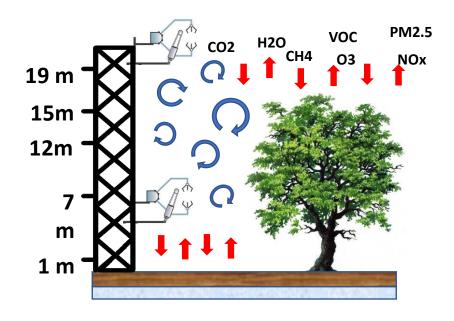
751. - doi: 10.1016/j.scitotenv.2020.142334


La capacità di raffreddamento esercitata da parchi urbani e filari di alberi è pari a circa 3 °C entro rispettivamente 100 e 30 metri dal bordo

Fonte: Marando F, Salvatori E, Sebastiani A, Fusaro L, Manes F (2019). Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecological Modelling. 392: 92–102.

Biodiversità = maggiore capacità di raffreddamento

- L'effetto di raffreddamento degli spazi verdi varia stagionalmente
- La diversità degli alberi e la copertura degli alberi sono positivamente correlate con l'ampiezza dell'abbassamento della temperatura
- La profondità della chioma degli alberi è correlata positivamente con il raffreddamento e la densità degli alberi è correlata negativamente.
- L'ottimizzazione della struttura della comunità vegetale migliora l'effetto di raffreddamento degli spazi verdi senza aumentarne le dimensioni.



Greenspace (b) has a higher tree diversity. It provides a greater cooling effect than greenspace (a).

Wang et al. 2021 STOTEN

Casi di studio per la quantificazione dei servizi ecosistemici

AIRTREE: un modello orientato alla quantificazione dei servizi ecosistemici (CO₂, PM, NOx, O₃)

Aggregated Interpretation of the Energy balance and water dynamics for Ecosystem services assessment

E' costituito da 4 moduli

- Trasferimento radiativo
 Temperatura fogliare
 Radiazione
- 2) Suolo Stato idrologico
- 3) Deposizione • Deposizione di PM e O₃
- 4) Fotosintesi Modello A-gs BWB

AIRTREE multi-layer model

Leaf level measurements

Turbulent transport

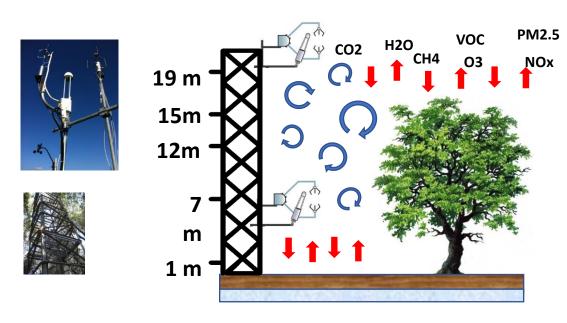
Rout

Chioma divisa in 5 layer

Le foglie caratterizzate da differenti classi angolari e dalla presenza sia di foglie di

luce che di foglie d'ombra.

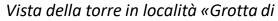
Science of the Total Environment 682 (2019) 494-50


Ozone and particle fluxes in a Mediterranean forest predicted by the AIRTREE model

Silvano Fares ^{a,*}, Alessandro Alivernini ^a, Adriano Conte ^a, Federico Maggi ^b

Fotosintesi ed traspirazione a livello di chioma sono calcolati integrando ciascuno strato in funzione del rapporto tra foglie di luce e d'ombra presenti.

Validazione del modello: Il sistema di misura dei flussi di CO2, H2O, ozono, PM a Castelporziano



- A partire dal 2012 misuriamo la concentrazione dei gas in modo ultrarapido (10 Hz) 365 giorni l'anno. 8 Gbyte di dati salvati settimanalmente nei nostri datalogger.
- Misure di supporto: Precipitazione, PAR, Radiazione netta, Radiazione solare incidente, direzione e intensità del vento, temperatura ed umidità dell'aria e del suolo, flusso di calore nel suolo, bagnatura fogliare.

Con l'Eddy Covariance, Il flusso verticale della lecceta viene misurato dalla covarianza tra la componente verticale della velocita` del vento e la concentrazione del gas in esame

Le Torri di Castelporziano

I dati integrano i flussi generati su di una superficie posta sopravvento al punto di campionamento, di dimensioni che possono arrivare a qualche km2, a seconda dell'altezza di campionamento e delle caratteristiche atmosferiche.

Vista della torre in località «Castello»

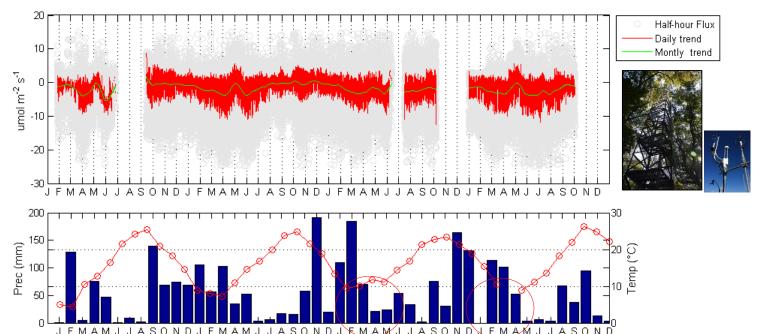
Vista dalla torre in località «Scoponcino»

Le reti di monitoraggio europee includono le foreste urbane

ICOS (Integrated Carbon Observation System), una "**European Research Infrastructure** (ESFRI)" per comprendere il bilancio di gas serra delle foreste europee attraverso monitoraggio in continuo

- I siti ICOS rispettano un rigoroso protocollo di misura
- Uso della tecnica Eddy Covariance
- Costi ingenti e necessità di formare ricercatori/tecnici specializzati. Progetti MUR-PON e MUR-Potenziamento infrastrutture in corso
- Commitment di lungo termine da parte dell'istituzione che gestisce il sito
- Recente call progetto europeo «Green deal» orientato sulle foreste urbane

Parco urbano di Capodimonte, Napoli



Anni più umidi rendono la lecceta un forte sink di carbonio

2015

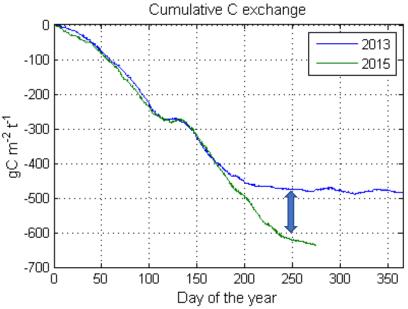
frontiers
in Forests and Global Change

ORIGINAL RESEARCH published: 07 May 2011

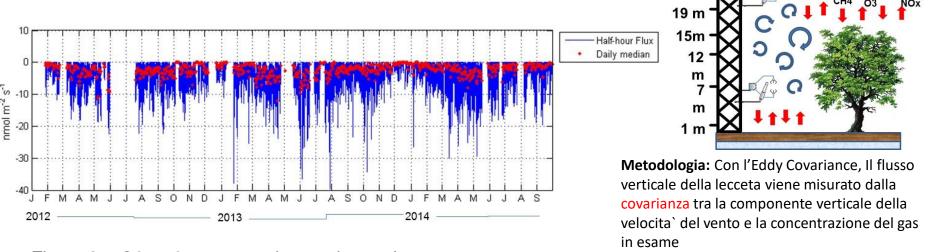
Ecophysiological Responses to Rainfall Variability in Grassland and Forests Along a Latitudinal Gradient in Italy

Adriano Conte¹, Silvano Fares^{1*}, Luca Salvati¹, Flavia Savi¹, Giorgio Matteucci² Francesco Mazzenga³, Donatelia Spano^{4,5}, Costantino Sirca^{4,5}, Serena Marras⁴. Marta Galvagno⁸, Edoardo Cremonese⁸ and Leonardo Montanani^{7,8}

ICOS sito sperimentale del CREA all'interno della tenuta presidenziale di Castelporziano


Circa 600 g CO2 m-2 per anno rimossi dal bosco in anni con scarsa precipitazione, quasi il doppio nel 2014!

2014


- Tot. GPP in 2013: 1793 g (C) m-2 (665 mm precip.)
 - Tot. GPP in 2014: 2242 g (C) m-2 (900 mm precip.)

2013

• Tot. GPP in 2019: 1870 g (C) m-2 (694 mm precip.)

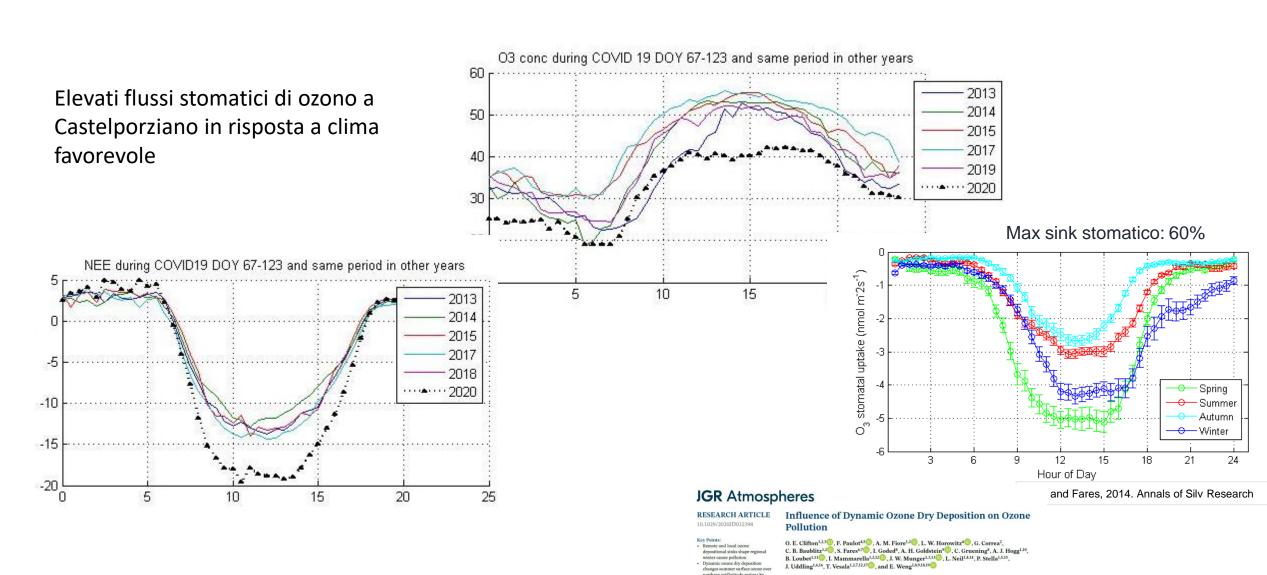
Gli ecosistemi forestali come sink di ozono

Fino a 8 g O3 m-2 sequestrati annualmente!

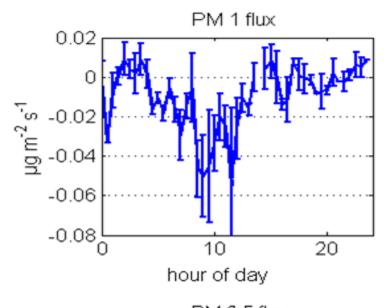

- Sink stomatico
- Deposizione cuticole e suolo
- Rimozione in fase gassosa (VOC e NO_x)

Fares et al. 2014. Agric For Met. Progetto EXPLO3RVOC

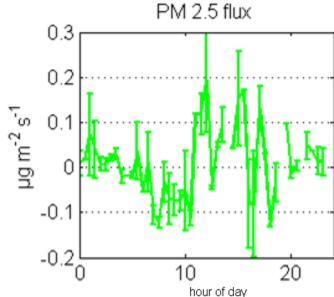
Sito permanente del presso la Tenuta Presidenziale di Castelporziano, candidato ad ICOS



Le concentrazioni di ozono a Roma durante il lockdown (Dati ARPA)

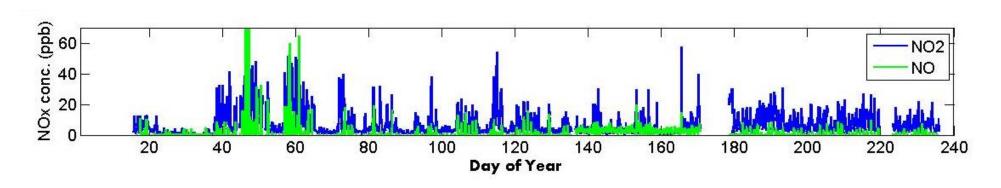


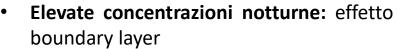
Livelli di ozono più elevati rispetto all'anno precedente durante il lockdown nel centro città, dinamica inversa in zone rurali/parchi urbani

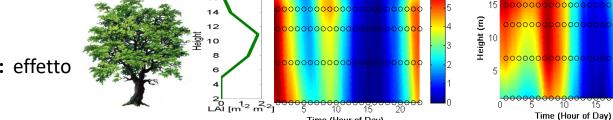

Perché le concentrazioni di ozono nelle città sono aumentate durante il lockdown ma sono diminuite nei parchi urbani?

La lecceta di Castelporziano è un sink di PM

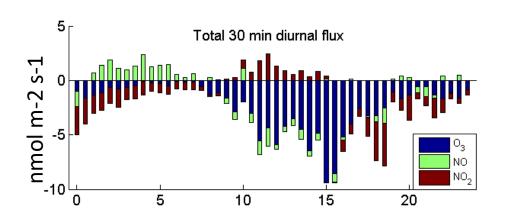
 PM1: evidenti deposizioni nelle ore centrali della giornata

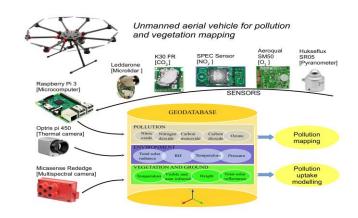

• Flussi positive di PM2.5 indicano risospensione attivata dalla turbolenza

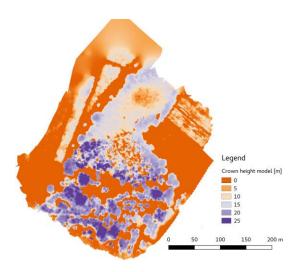

Fares et al. Env. Poll. 2016


Gli ossidi di azoto scambiati con l'atmosfera

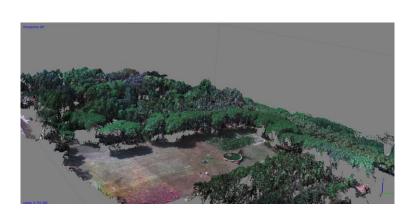
NO


Time (Hour of Day)


- Nelle ore di luce: Emissione di NO2 dovute a reazione NO+ozono
- Durante la notte: Emissione di NO da processi al suolo e mancanza di ozono e **VOCs**



NO₂


L'impiego di droni + rilievi a terra ci aiuta a parametrizzare i modelli

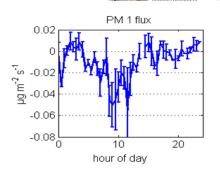
- Grazie a uno schema di campionamento multifase, i rilievi forestali a terra su numero adeguato di plots servono a inferire statisticamente i valori rilevati all'intera popolazione considerata.
- Parametri rilevati a terra: architettura degli alberi e LAI.
- Informazioni aggiuntive raccolte da drone: meteorologia, modello digitale del terreno, altezza delle chiome, ortomosaico in falsi colori per ricavare cartografia tematica

Modello digitale delle altezze ottenuto per triangolazione

Point cloud: una nuvola di punti georeferenziati alla quale sono attribuiti valori di riflettanza spaziale che permette di studiare la struttura del bosco e le caratteristiche ecofisiologiche della vegetazione in risposta all'inquinamento

Ortomosaico in falsi colori: Una base per ottenere una cartografia tematica della vegetazione urbana

Modelli + misure per valutare sequestro di carbonio e inquinanti: calcoli per la Tenuta di Castelporziano


AIRTREE (Aggregated Interpretation of the Energy balance and water dynamics for Ecosystem services assessment): Il sequestro di CO2, ozono e polveri da parte di alberi urbani attraverso una modellistica multi-layer

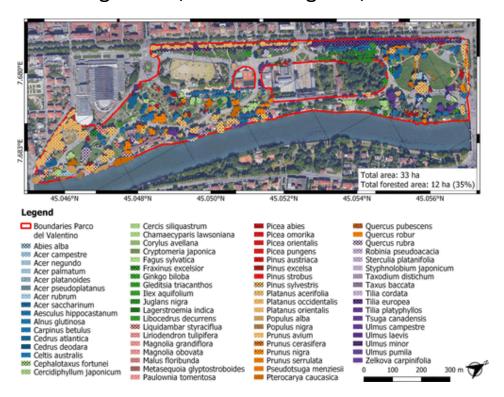
Rimozione di circa 5 tonnellate di carbonio e 3 kg di polveri sottili e per ettaro

The world passes 400ppm carbon

dioxide threshold. Permanently

theguardian

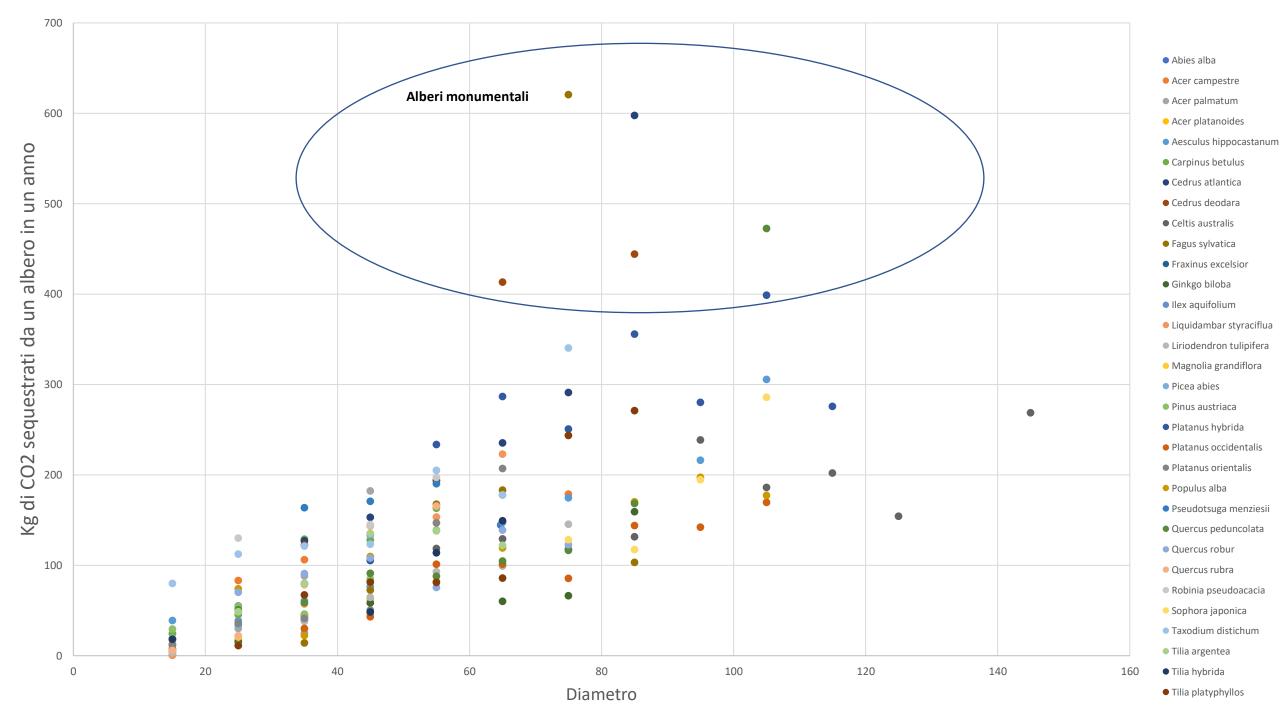
Emissione di una auto che percorre circa 10k km in un anno = 1.5 tonnellate di CO2


Una superficie forestale di 5000 ettari assorbe le emissioni di CO2 di circa 50.000 veicoli in un anno!

...circa il 3% delle emissioni di CO2 e lo 0.6% di PM dal traffico veicolare romano

Caso di studio presso Parco del Valentino, Torino

- I boschi urbani e peri-urbani sono pozzi di carbonio che rimuovono 2-4 ton. di carbonio/ha (50 kg di CO2 per albero) a seconda della composizione specifica e del livello di maturità.
- 1.4 kg ozone / ettaro e 8 kg PM / ettaro



Environmental Science & Technology pubs.acs.org/est Article

Table 2. NPP, Tropospheric Ozone (O₃), and Particle (PM₁₀ and PM₂₅) Dry Deposition Simulated by the AIRTREE Model for the Year 2018 at Valentino Urban Park^a

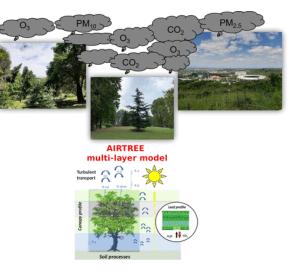
or the Year 2018 at Val	entino (Jrban Park							
species	đbh (cm)	NPP (g m ⁻²)	NPP dass	O ₃ (g m ⁻²)	O ₃ dass	PM ₁₀ (g m ⁻²)	PM ₁₀ dass	PM _{2,5} (g m ⁻²)	PM clas
. alba	55	61 1.16	VII	0.73	I	13.82	X	2.21	X
bies nordmanniana	55	686.03	VII	1.12	П	13.11	X	2.11	X
. campestre	75	358.45 327.59 ± 37.58	IV IV	1.19 0.8 ± 0.08	П I	2.97	III IV	0.39 0.41 ± 0.041	IV V
cer negundo cer palmatum	55	327.39 ± 37.58 248.59	ш	0.56	I	3.11 ± 0.311 2.79	ш	0.41 ± 0.041 0.37	IV
cer paimatum . platanoides	55 55	308.2 ± 30.52	IV	0.56 0.9 ± 0.18	I	2.54 ± 0.03	ш	0.37 0.34 ± 0.004	IV
cer rubrum	35	132.07	п	0.43	I	1.98	п	0.26	ш
cer saccharum	95	260.01	ш	0.86	I	1.88	п	0.25	ш
esculus hippocastanum	115	327.4	īV	0.85	I	3.52	īv	0.46	v
lnus glutinosa	55	275.9	ш	0.67	I	3.57	īv	0.53	v
Carpinus betulus	55	259.42 ± 12.19	ш	0.67 ± 0.06	I	2.55 ± 0.032	ш	0.34 ± 0.004	IV
. atlantica	115	686.15	VII	1.06	п	27.51	X	4.61	X
edrus deodara	95	701.01 ± 41.95	VIII	1.26 ± 0.32	п	25.19 ± 0.135	x	4.23 ± 0.047	X
edrus glauca	75	572.77	VI	0.87	I	18.77	X	3.13	X
. australis	155	214.19	ш	1.19	I	1.46	п	0.19	п
ercis siliquastrum	55	247.61	ш	0.64	I	2.4	ш	0.32	ΓV
hama ecyparis lawsoniana	55	647.91	VI	0.84	I	18.4	x	3.12	X
orylus a vellana	55	384.37	IV	1.83	ш	2.46	ш	0.33	rv
riptomeria japonica	55	699.28	VII	1.01	п	13.21	x	2.09	X
. sylvatica	135	224.59	ш	0.74	I	2.19	ш	0.29	п
raxinus excelsior	75	215.64	ш	0.93	I	1.77	п	0.24	п
inkgo biloba	95	208.17	ш	1	п	2.12	ш	0.28	п
ex aquifolium	35	269.42	ш	0.9	I	6.97	VII	1.09	X
glans nigra	55	208.47 ± 41.08	ш	0.77 ± 0.11	I	2.15 ± 0.449	ш	0.29 ± 0.06	п
igerstroemia indica	15	53.36	I	1.52	IV	5.62	VI	0.88	IX
bocedrus decurrens	55	337.97 ± 36.06	IV	1.06 ± 0.4	п	16.33 ± 0.201	X	2.7 ± 0.057	X
quidambar styraciflua	75	309.18	IV	1	п	2.45	ш	0.32	IV
tulipifera	75	291.83 ± 12.59	ш	1.16 ± 0.09	п	2.45 ± 0.005	ш	0.32 ± 0.001	TV
agnolia grandiflora	55	241.63	Ш	0.56	I	11.47	X	1.79	X
agnolia obovata	55	259.3	ш	0.58	I	11.47	X	1.79	X
alus	15	58.43	I	0.57	I	0.75	I	0.1	I
alus floribunda	15	54.99	I	0.44	I	0.75	I	0.1	I
letase quo ia glyptostroboides	95	679.01	VII	1	П	27.73	X	4.73	X
tomentosa	75	389.73	IV	0.9	I	14.68	X	2.3	X
abies	55	384.65	IV	0.78	I	16.64	X	2.74	X
icea omorica	55	383.97	IV	0.79	I	16.59	X	2.73	X
icea orientalis	35	255.95 ± 19.61	Ш	0.57 ± 0.02	I	9.96 ± 1.03	X	1.63 ± 0.17	X
icea pungens	55	376.08 ± 19.12	IV	0.74 ± 0.03	I	15.69 ± 0.782	X	2.58 ± 0.13	X
inus excelsa	55	411.6	v	0.88	I	15.55	X	2.57	X
inus strobus	75	444.19	v	0.81	I	17.08	X	2.82	X
inus sylvestris	55	483.4	v	1.24	п	19.22	X	3.23	X
latanus acerifolia	135	311.33 ± 30.96	IV	1.12 ± 0.08	п	2.16 ± 0.23	Ш	0.29 ± 0.03	П
latanus hybrida	175	359.67	IV	1.17	п	2.95	Ш	0.39	IV
latanus occidentalis	175	361.56	IV	0.92	I	2.94	Ш	0.39	IV
atanus orientalis	115	337.19	IV	1.19	п	2.39	Ш	0.32	IV
opulus alba	115	226.16	Ш	0.96	I	1.91	п	0.25	п
opulus i talica	115	195.6	П	0.7	I	1.9	П	0.25	п
TURE LUS	55	217.11	Ш	0.7	I	2.46	ш	0.33	I
avium	35	150.22	П	0.58	I	1.91	п	0.25	п
cerasifera	15	108.25	П	0.62	I	1.42	п	0.19	п
unus kanzan	15	128.43	П	1.06	П	1.45	п	0.19	п
unus pissardi	15	71.16	I	0.64	I	1.42	п	0.19	п
menziesii	55	640.81 ± 8.13	VII	0.83 ± 0.01	I	15.64 ± 0.655	X	2.57 ± 0.106	X
uercus peduncolata	115	317.21	IV	1.06	П	2.58	ш	0.34	I.
. pubescens	15	74.53	I	0.73	I	1.06	П	0.14	п
. robur	135	317.36	IV	0.94	I	2.53	ш	0.34	I.
. rubra	115	324.42	IV	1.22	П	2.26	Ш	0.3	п
. pseudoacacia	55	319.24 ± 6.86	IV	0.95 ± 0.04	I	2.67 ± 0.079	Ш	0.36 ± 0.011	17

Un piccolo parco urbano di poche decine di ettari può assorbire l'anidride carbonica rilasciata da circa 100 veicoli benzina Euro6.

Caso di studio: Parco di Castel di Guido, Roma

- 4.6 tonnellate di carbonio/ettaro, in media 11 kg (CO2) per albero
- 8.1 kg ozono e PM / ettaro

Environmental Science & Technology


pubs.acs.org/est

Article

Table 1. NPP, Tropospheric Ozone (O₃), and Particle (PM₁₀ and PM_{2.5}) Dry Deposition Simulated by the AIRTREE Model for the Year 2018 at Castel di Guido Natural Reserve^a

species	dbh (cm)	NPP $(g m^{-2})$	NPP class	$O_3 (g m^{-2})$	O ₃ class	$PM_{10} (g m^{-2})$	PM ₁₀ class	$PM_{2.5} (g m^{-2})$	PM _{2.5} clas
A. campestre	35	354.23 ± 38.76	IV	2.97 ± 0.02	V	1.01 ± 0.0482	II	0.09 ± 0.0041	I
Acer negundo	15	46.6	I	2.75	V	0.77	I	0.06	I
A. cordata	35	438.59 ± 39.9	V	3.27 ± 0.05	VI	1 ± 0.0405	П	0.08 ± 0.0034	I
C. atlantica	35	938.24 ± 128.36	X	5.67 ± 0.33	X	7.39 ± 1.272	VIII	1.01 ± 0.1739	X
C. australis	35	392.79	IV	2.8	V	0.93	I	0.08	I
C. sempervirens	55	1084.6	X	7.4	X	16.23	X	2.27	X
Eucalyptus spp.	55	490.78	V	3.34	VI	1.44	П	0.12	П
Fraxinus angustifolia	15	253.71 ± 79.24	Ш	2.19 ± 0.09	IV	0.83 ± 0.1507	I	0.07 ± 0.0125	I
F. ornus	35	562.24 ± 95.6	VI	2.88 ± 0.26	V	1.42 ± 0.1802	п	0.12 ± 0.0155	П
Juglans nigra	15	140.48 ± 126.39	П	2.17 ± 0.09	IV	0.82 ± 0.1714	I	0.07 ± 0.0145	I
Juglans regia	35	370.26	IV	2.51	V	1.05	п	0.09	I
Malus sylvestris	35	225.31	III	2.02	IV	0.66	I	0.06	I
Ostrya carpinifolia	35	528.65 ± 91.68	VI	2.85 ± 0.25	V	1.32 ± 0.1603	II	0.11 ± 0.0138	П
Pinus eldarica	35	704.89 ± 97.32	VIII	6.19 ± 0.61	X	9.58 ± 2.4196	X	1.31 ± 0.333	X
Pinus halepensis	55	894.86	IX	6.67	X	13.73	X	1.88	X
Pinus pinaster	55	847.47	IX	6.46	X	12.01	X	1.65	X
Pinus pinea	55	794.22 ± 30.14	VIII	6.39 ± 0.12	X	10.86 ± 0.7685	X	1.49 ± 0.1055	X
Populus nigra	15	83.25	I	2.01	IV	0.69	I	0.06	I
Prunus avium	35	375.44	IV	2.76	V	1.12	п	0.1	I
Pyrus amygdaliformis	15	27.91	I	2.15	IV	0.66	I	0.06	I
Pyrus pyraster	35	319.2	IV	2.57	V	1.08	II	0.09	I
Q. cerris	35	412.27 ± 51.97	V	2.89 ± 0.21	V	1.21 ± 0.1192	П	0.1 ± 0.0103	I
Quercus frainetto	35	332.5 ± 16.7	IV	2.54 ± 0.09	\mathbf{v}	1.12 ± 0.0405	II	0.1 ± 0.0035	I
Q. ilex	35	656 ± 162.43	VII	3.43 ± 0.48	VI	2.79 ± 0.7179	III	0.31 ± 0.0803	IV
Q. pubescens	35	486.99 ± 61.35	V	2.98 ± 0.22	V	1.21 ± 0.1192	II	0.1 ± 0.0103	I
Q. robur	15	250.37 ± 77.66	Ш	2.45 ± 0.12	IV	0.7 ± 0.1171	I	0.06 ± 0.01	I
Quercus suber	35	854.12 ± 87.2	IX	3.52 ± 0.2	VII	2.09 ± 0.1795	III	0.23 ± 0.0201	III
Quercus trojana	15	159.36 ± 80.58	П	2.24 ± 0.08	IV	0.56 ± 0.1356	I	0.05 ± 0.0115	I
R. pseudoacacia	35	474.66	V	2.65	V	1.16	II	0.1	I
Sorbus domestica	15	189.59	п	2.07	IV	1.01	П	0.09	I

[&]quot;Model simulations were carried out for each species at different dbh. We grouped results according the highest dbh group. The groups were: 15 (dbh ranging from 5 to 15 cm), 35 (dbh ranging from 20 to 35 cm), and 55 (dbh ranging from 40 to 55 cm). SD is shown in cases where more dbh classes were present within each group. Evergreen species are marked in bold.

Environmental Science & Technology

pubs.acs.org/est

Article

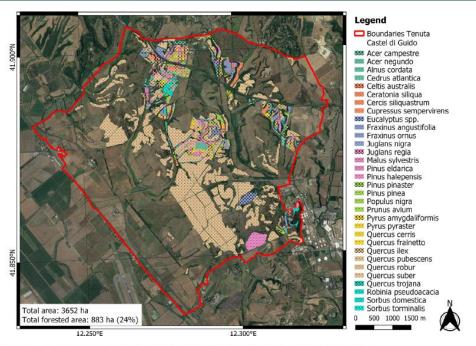
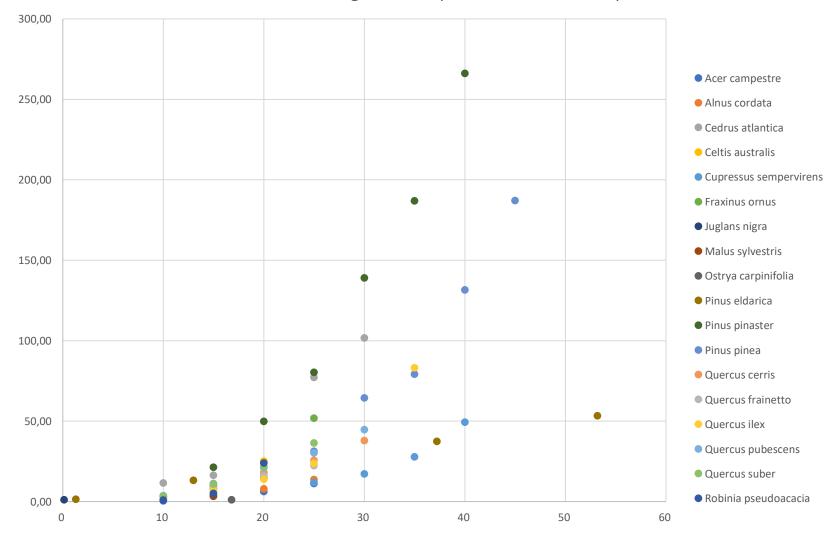



Figure 1. Map of the vegetation surveyed at the park of Castel di Guido, Rome. Map data 2020 Google.

Fares et al. ES&T 2020

Relazione tra diametro e Kg di CO2 sequestrata annualmente per albero

Conifere vs latifoglie

 Le conifere sempreverdi hanno mostrato più elevati livelli fotosintetici, con tassi di rimozione di PM maggiori rispetto all'ozono

 A parità di assimilazione di carbonio, a Castel di Guido si apprezza il maggiore sequestro di ozono rispetto alle PM grazie al ruolo attivo degli stomi

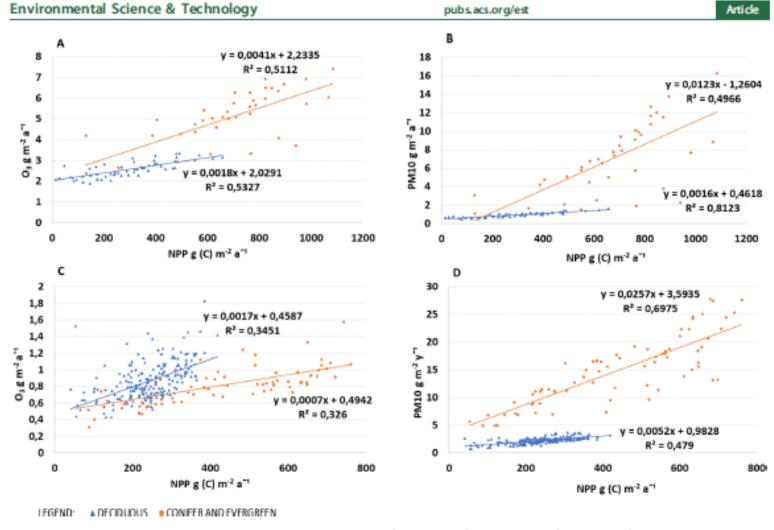
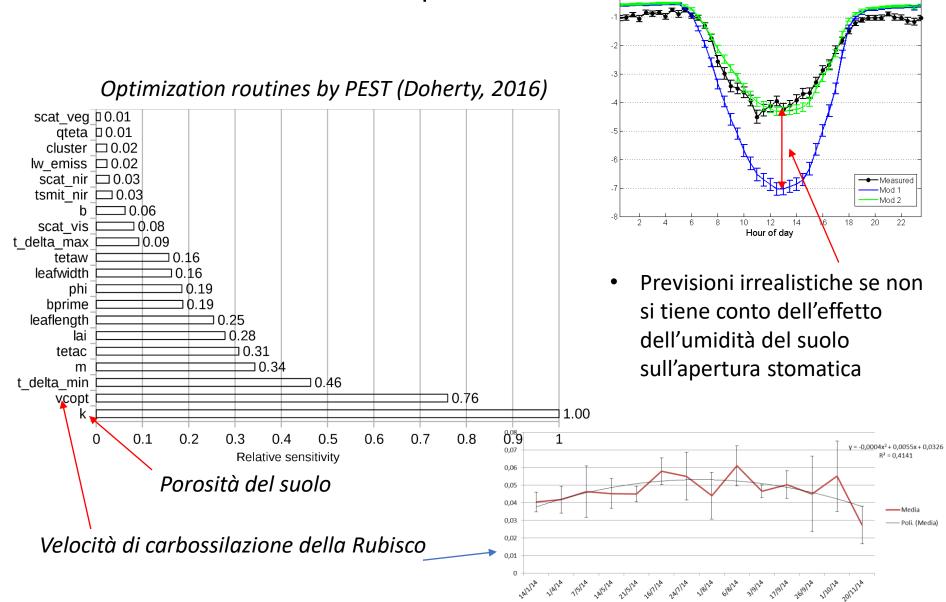
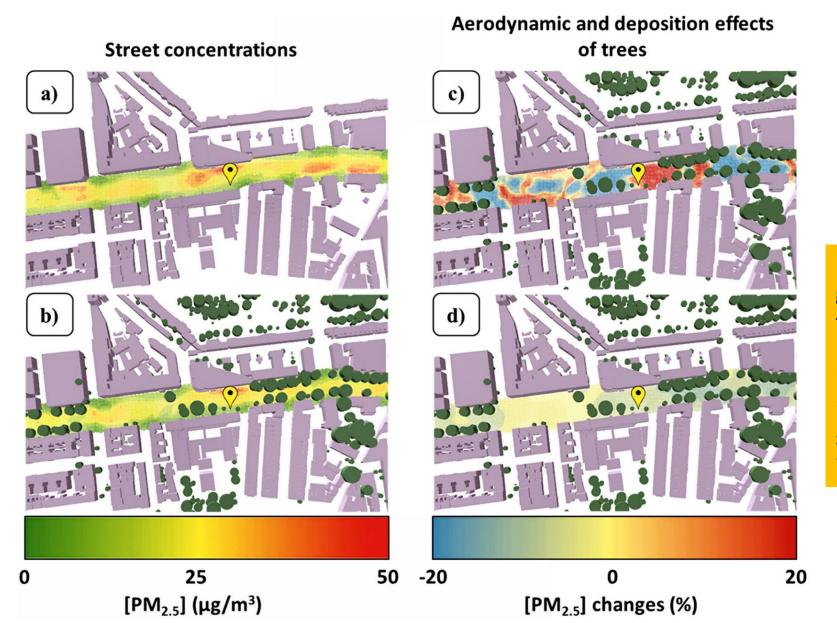


Figure 6. Correlation of NPP with ozone and PM for Castel di Guido (subplots A, B) and Valentino (subplot C, D) urban parks.

Le sfide del futuro

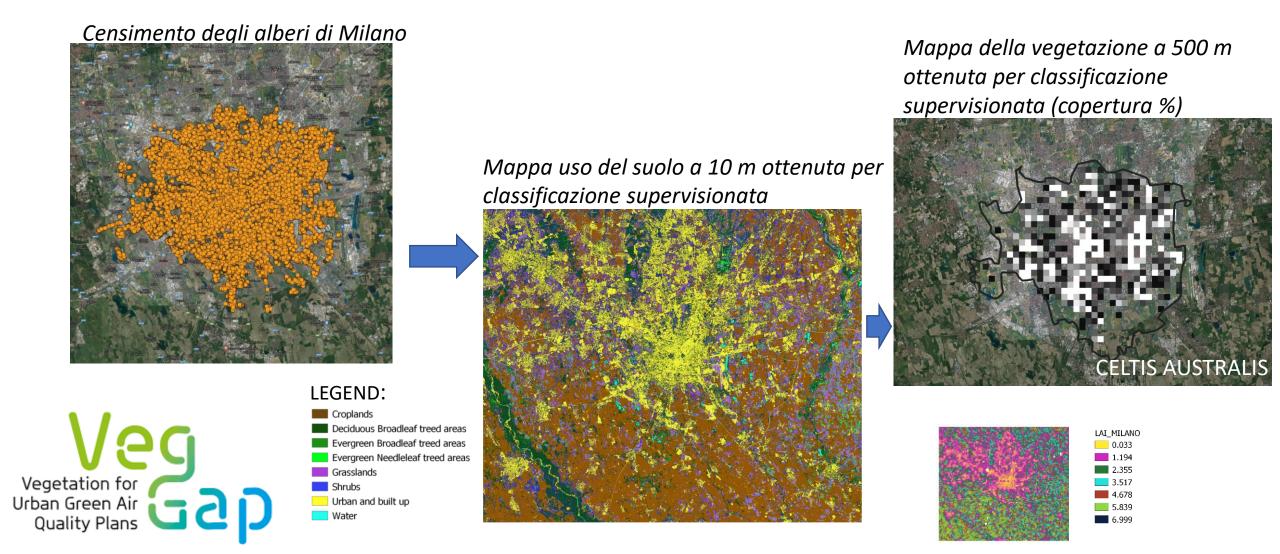


Le sfide del futuro: Più ricerca per comprendere la capacità di specie forestali nel

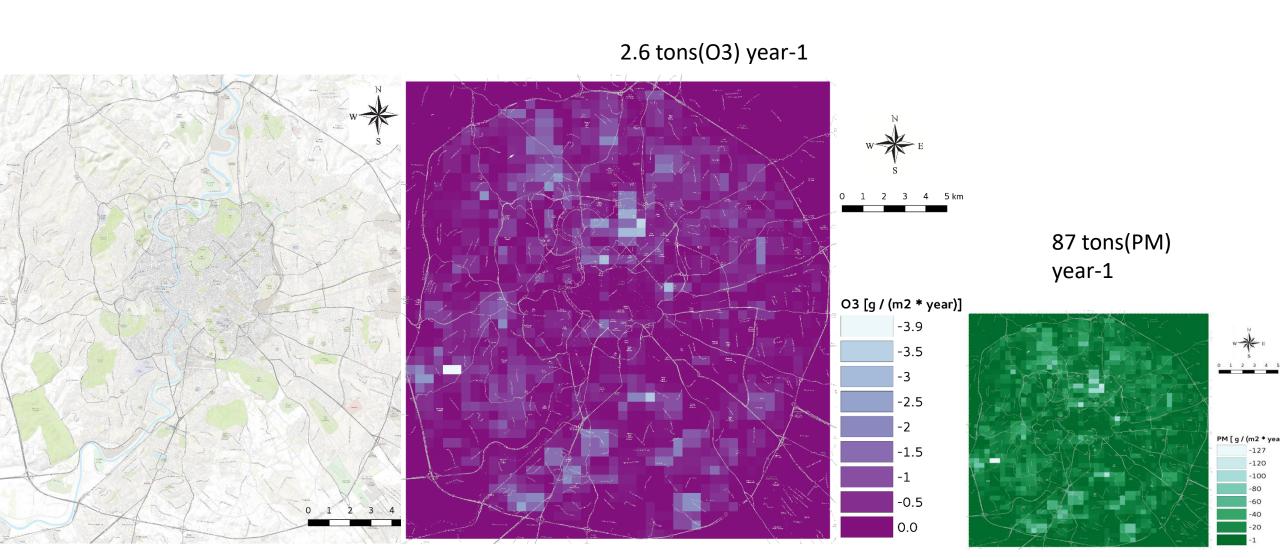

Sensibilità del modello AIRTREE, l'importanza di una corretta parametrizzazione

rimuovere carbonio e inquinanti.

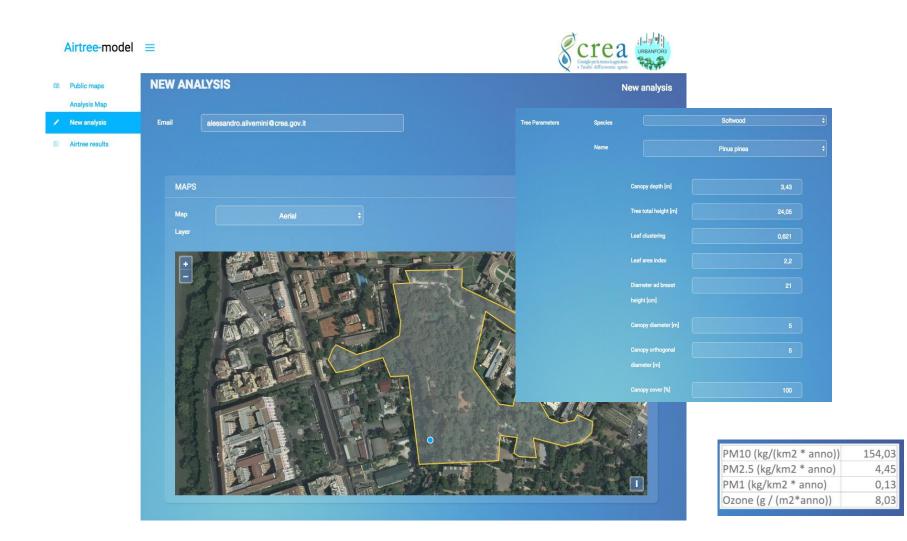
GPP


Le sfide del futuro: Più ricerca sui sistemi verdi «verticali» con studi di fluidodinamica

Le chiome degli alberi, generando maggiore turbolenza, provocano una maggiore dispersione di inquinanti. Con la deposizione, in questo quartiere di Londra si sono abbattute le polveri del 7%! (JenJean et al. 2017)


Le sfide del futuro:

 Più efficiente pianificazione del verde, alcune città sono sprovviste di un censimento degli alberi!

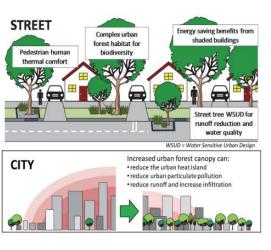


La rimozione dell'ozono e del particolato a Roma

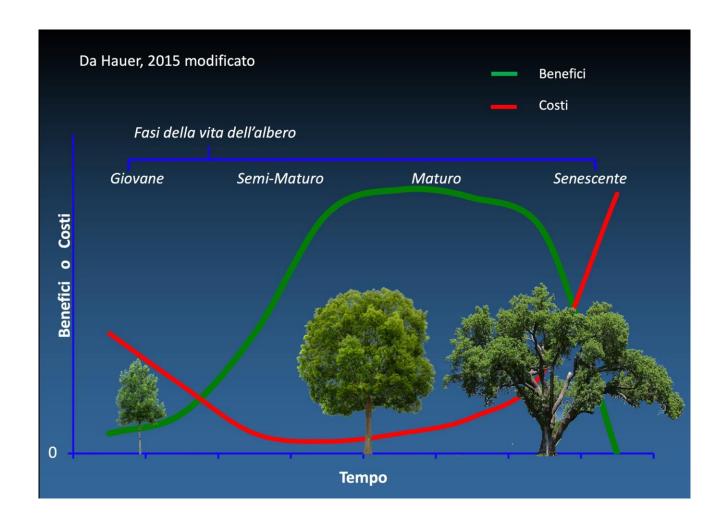
Uso di immagini ad alta risoluzione (Sentinel 2), dati sull'inquinamento atmosferico, produzione del LAI e utilizzo di AIRTREE

Le sfide del futuro: Mettere in atto un sistema di pagamento dei servizi ecosistemici

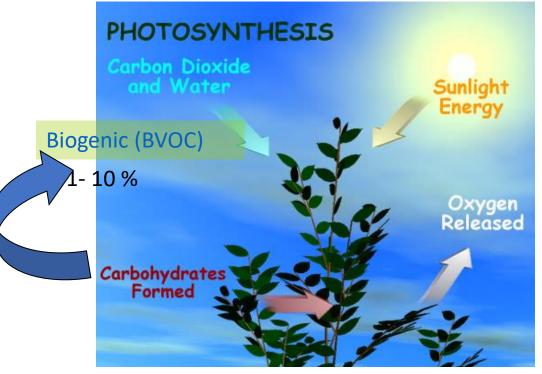
Le sfide del futuro: Piantare milioni di alberi


Nuovo paradigm<mark>a:</mark>
Passare dal metro
quadro all'ettaro

- L'Italia è chiamata nei prossimi 10 anni a piantare più di 200 mln di alberi come proprio contributo alla "Strategia europea per la biodiversità 2030" che prevede di piantare 3 mld di alberi nei paesi dell'Unione.
- Un obiettivo perseguibile grazie alla Strategia Forestale Nazionale attenta alla pianificazione e gestione sostenibile delle risorse forestali.
- Ipotizzando almeno 100mila ha di nuovi impianti e nuovi boschi prevalentemente periurbani, determinanti anche per la connessione ecologica con le foreste naturali la sottrazione di anidride carbonica dall'atmosfera aumenterebbe di quasi 1 milione di tonnellate rispetto ai 46 mln di tonnellate di anidride carbonica che le foreste italiane rimuovono ogni anno dall'atmosfera.

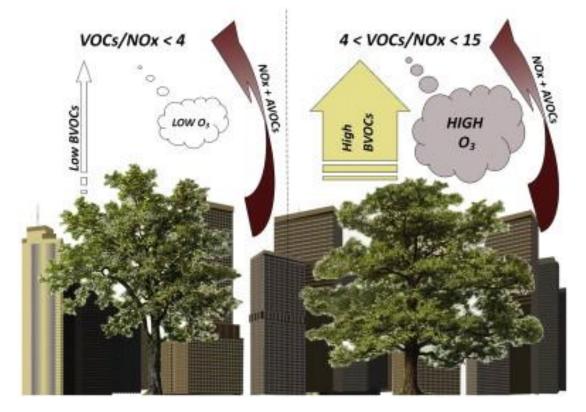

Le sfide del futuro: gestire il verde urbano per massimizzare i servizi ecosistemici

La scelta delle specie arboree e gli interventi selvicolturali in funzione delle caratteristiche pedo-climatiche e dei servizi ecosistemici attesi

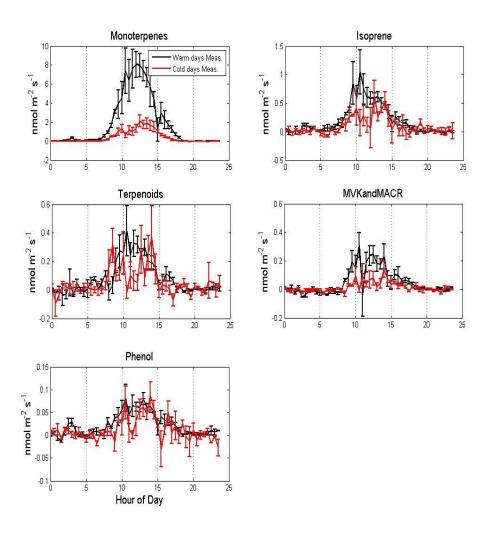


Livesley et al J. Environ. Qual. 2016

Le sfide del futuro: gestire il verde urbano minimizzando i disservizi servizi ecosistemici



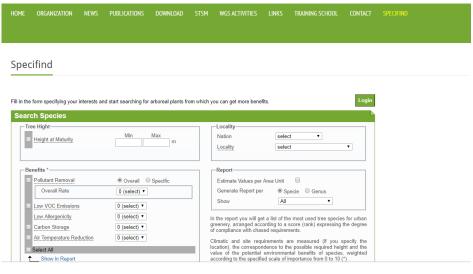
Alcune specie forestali utilizzate nelle alberature urbane possono produrre composti organici volatili che formano ozono, occorre fare attenzione nella scelta delle specie!



- Monoterpenes (C₁₀H₁₆)
- Oxygenated VOC
- Sesquiterpenes (C₁₅H₂₄)

La lecceta di Castelporziano emette VOC

Tipico andamento giornaliero dei VOC che rispondono a luce e temperatura



Le sfide del futuro: supportare gli amministratori del verde

Nature based solutions for sustainable and resilient cities ORVIETO, ITALY 4-7 April 2017

Alberi e siepi antismog

AIRTREE in WebGis: on-line decision support system for urban forestry - www.air-tree.org

	Tabella piante	Grafico piante									
eleziona i seguenti parametri:	Show 10 v entries										
quinante:	Genere_Specie	Nome_comune	Dimensione pianta	Allergenicita'	Assorbimento O3	Assorbimento NO2	Abbattimento PM10	Assorbimento CO2			
Assorbimento di O3 ▼	Fagus_sylvatica	Faggio europeo	Albero grande	bassa	47.95	44.174	5.788	0.4699			
	Fraxinus_excelsior	Frassino maggiore	Albero grande	media	42.7	43.206	0.663	0.2727			
pologia pianta:	Liriodendron_tulipifera	L'albero dei tulipani o tulipie	Albero grande	nulla	36.626	42.563	3.036	0.0362			
Albero grande ▼	Tilia_cordata	Tiglio selvatico	Albero grande	nulla	32.772	30.424	2.84	0.0606			
llergenicita':	Tilia_platyphyllos	Tiglio nostrano	Albero grande	nulla	32.772	30.424	2.84	0.0606			
-	Fagus_spp.	Faggio	Albero grande	bassa	29.439	41.717	5.278	0.1092			
Alta ▼	Platanus_x acerifolia	Platano comune	Albero grande	bassa	28.396	37.844	1.876	0.0822			
celta grafico	Aesculus_hippocastanu	m Ippocastano	Albero grande	nulla	26.899	22.474	0.914	0.1223			
completo	Acer_pseudoplatanus	Acero Montano	Albero grande	nulla	26.124	24.355	2.58	0.0935			
zoomato	Acer_platanoides	Acero Riccio	Albero grande	nulla	26.04	24.355	2.58	0.0805			
sse x:	csv						Pi	revious 1 Next			

Unità di misura
Ozono (O3): bilancio giornaliero per pianta estate (rimozione netta) 01.04-31.10 O3 assorbito-O3 prodotto g'tree
Biossido di azoto (NO2): assorbimento giornaliero per pianta anno g'tree day
Particolato fine (PM10): assorbimento giornaliero per pianta inverno (01.11-31.03) g'tree day
Anidride carbonica (CO2): totale sequestrata per anno t'tree vezr

Silvano Fares

CNR-Istituto per la BioEconomia

Skype: silva_802000

email: silvano.fares@cnr.it

