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What is climate change?

“Climate change refers to a change in the state of the
climate that can be identified by changes in the mean and/or the variability of its properties and that

persists for an extended period, typically decades or longer.”
(IPCC — SR15, 2018)

Causes?

ENVIRONMENTAL RESEARCH
LETTERS

LETTER » OPEN ACCESS

Greater than 99% consensus on human caused climate
change in the peer-reviewed scientific literature

Mark Lynas*', Benjamin Z Houlton? and Simon Perry?
Published 19 October 2021 « © 2021 The Author(s). Published by IOP Publishing Ltd
Environmental Research Letters, Yolume 16, Number 11

(not only from industries!)
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Is climate change really an evidence?
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There is evidence of climate change

Cherry blossom: peak bloom day of the year
Kyoto, Japan, 812 to 2021
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Methodologies for studying Carbon, Water and Nitrogen Cycles and Forest Dynamics

Eddy covariance No predictive

Remote sensing No predictive

No predictive at varying site
conditions

Allometric equations and
biometric estimates
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How (and why) study climate change and the mitigation/adaptation role of forests?

Y MITIGATION

it acts on the causes, to drastically decrease the anthropogenic
causes of climate warming (greenhouse gas emissions)

Y ADAPTATION

it deals with the effects, i.e. the impacts that directly and indirectly
affect humans and the environment

Can models deal with both??

modelling
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But what is a “model”?
(some definitions)

“A model is an informative representation of an object, person or system
(Wikipedia 2021)

“A model can be considered as a synthesis of the knowledge elements of a system”
(Jorgensen 1997)

“Models are simplified representations of the real world”
(Wainwright and Mulligan 2004)
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In its extreme essence a model is a tool:

(1) to describe a system (dynamic or not),

Cf] c/ﬁc[/e }[cwe

previston,

(2) to make useful predictions and .
soprattutto su/ futu’zo

Niels Bohr,
vecchio adagio danese

(3) to test hypotheses

(we will see same examples later)
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The first and potentially the most known model...

The Lotka-Volterra model (1925) (aka “the Predator-Prey model”)
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... a example of ecological model:

“The competitive exclusion principle” (aka Gause’s low):
“two species competing for the same limited resource cannot coexist at constant population values”

& 2404
E
2 160
- —— Species 1
= —o— Species 2
E =80
=
o Cellular automaton

° ° Time (|t1ezrat|ons) e . model of
interspecific
competition for a
single limited
resource

Number of iterations: 0
Number of red individuals of the species 1: 1
Number of blue individuals of the species 2: 1

Lew Halmykow, »wacheslay HKalmykow . werification and reformulation of the competitive exclusion grinciple
Chaos, Sofifons & Fracfals 56, 124-131, doiz 1010164 chaos 2013 07 008 (2013)
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—_a—— an evolutionarv or behavioral shift toward a different ecoloaical niche.




but there are, of course, also models in forestry:

DBH vs. Tree Height vs. Stand Density
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What'’s inside a model?
r

Basically, a model is an equation or a chain of equations
to describe something:
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...and in practice

System at initial state

System at final state
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Modelling means breaking down and representing the system in its main processes
happening at different temporal and spatial scale

Carbon dioxide enters, while water and
oxygen exit, through a leaf's stomata.

(e.g. photosynthesis and stomatal transpiration)

Forest
modelling
Lab. 14

@ .



The scales

Spatial Temporal

/d Iy o o Nyl )
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The spatial scale
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The spatial scale 70 km x 70 km
Cell level -

Horizontal Grid
(Latitude-Longitude)

Vertical Grid .
(Height or Pressure) |

CONTINENT
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The temporal scale

Semi-hourly Multi-decadal

(e.g. photosynthesis) (e.g. forest succession)

Different temporal representations for different processes
(e.g. radiative fluxes, water fluxes, carbon allocation)
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How to simulate forest dynamic temporally
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The main processes represented in vegetation models
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The main processes represented in vegetation models — Biophysical processes

SURFACE ALBEDOS
Eiogeophysics — Energy, Moisture, Momentum

Canopy radiative transfer

Ground albedos \4 P c = E
Solar zenith angle C:f—?.: % E E Marmenturm Flu
m =2 @ E = Wind Speed
RADIATIVE TRANSFER \ il % ® X 0 U,
= =
] = [
Solar fluxes @, %, _ —‘
Reflected Sol 5 %
Longwave fluxes A oAl g 3 T
=
SENSIBLE HEAT AND LATENT HEAT FLUXES ﬁbsﬁﬂéggfifnﬂ'ar'\ E ] % §
Sensible and latent heat fluxes for vegetated and not ,’*”’ *
Saturation vapor pressure r----50il Heat Flus I::“:::::::::::::::::
““““““““““ “HeatT =]
SOIL AND SNOW TEMPERATURE :::::::::::::::::::i__e_a__frfff::::::
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The main processes represented in vegetation models — Biogeochemical processes

- CANOPY PHOTOSYNTHESIS
- AUTOTROPHIC RESPIRATION
- Heterotrophic respiration

« C-N ALLOCATION

- PHENOLOGY

- Fire and mortality

- Vegetation structure

- Litterfall

- “CARBON CYCLFE”

- “NITROGEN CYCLES”

g Forest
iiﬁ modelling
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Grouped and summarizing in a conceptual framework e \\/ater flow

A
ATMOSPHERE X Y% Energy Energy flow
y 2
' . . A
Photosynthesi , SoHA Rain -—
o 2/ evap) N fixation,
Transpiration - N deposition,
PLANT : N volatilisation
Respiration | Leaves, Wood, Roots Disturbance
uﬁ Fertiliser
| 7 inputs

V4

ORGANIC MATTER SOIL

Litter: Leafy, Woody / Soil water
/

Soil:  Active (microbial) Mineral N, P

Slow (humic) NN S

Passive (inert) Leaching Runoff Fluvial,
aeolian
transport 23




A simple model in vegetation science. How to simulate a process (e.g. photosynthesis)

The process: photosynthesis.
Observations (roughly) say: photosynthesis increases linearly at increasing absorbed light and is

limited by environment Waring et al. (2016), Tamm Review
% o
20 oo ® %8 o EF
Parameter Congtant = RN T .
:‘é‘-:\ °° #o %ggo X °° O%oo'b .,3
§ § d’o"&%&’ oo%‘;"e zc c%p
— * * * 2n | co off "on 3508 o3 o
GPP — W (1- LAl T L e .
;‘ o :om moom‘,% ?
8 ry 2 oonﬁ §
Driver/forcing Variable ,
6] 5 10 15

Daily absorbed PAR (MJ m™ day™')

GPP = photosynthesis
a , = maximum canopy quantum efficiency (optimum photosynthesis per absorbed PAR)
PAR = Photosynthetically Active Radiation
LAI = Leaf Area Index

o K = coefficient of extinction

meceiiing  ENvironment = environmental modifiers (O—1) that limit optimum photosynthesis

Lab.
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A simple model in vegetation science. How to simulate a process (e.g. productivity)

The process: productivity.

Observations (roughly) say: the existence of pervasive acclimation mechanisms that tend to
stabilize the NPP:GPP ratio

Constant

NPP = @lb*é

Variable

NPP= Net Primary Production
Y = coefficient of extinction

NPPorBPingCm2yr’

1000 1500 2000

500

Collalti et al. (2020), Nature Comm.

e <20yr | %o e
® 20-60 yrs oP,!
>60 yrs é,’

Y =0.46x + 0.12

n =228

[ I [ [ [
1000 2000 3000 4000 5000

GPPingCm2yr’
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A complex model in vegetation science. How to simulate all process
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...and models and codes can become very complex....

Margaret Hamilton , computer scientist,
director of the Software Engineering Division
of the MIT Instrumentation Laboratory, which
developed on-board flight software for
NASA's Apollo program
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...but more practically the GPP (a code)

{

{ s->value[ALPHA] '= NO DATA )
Alpha C = s->value[ALPHA] * s->value[F (02] * s->value[F NUTR] * s->value[F T] * s->value[PHYS MOD]
Epsilon C = Alpha C * MOLPAR MJ] * GC MOL;

Epsilon C = s->value[EPSILONgCMJ] * s->value[F C02] * s->value[F NUTR] * s->value[F T] * s->value[PHYS MOD]

MJ] / (MOLPAR M] * GC MOL);

Alpha C = Epsilon C / (MOLPAR MJ * GC MOL):;

( s->value[F SW] <= WATER STRESS LIMIT )

( ! s->value[CANOPY TRANSP] )

Forest
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...but more practically (some model inputs)

1958,8,8,29, Fagussylvatica,T,1326,0,5.961357466,8.814479638

Stand data
for model initialization

e,8,F,55.29,11.38,15.33,21.59,63.88,188,8.98,8.5,808. -98999; -99599; -

Climate forcing
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but more practically (some model inputs)...

us_ sy tica param ati fil

Species—specific parameters
(species ecophys. traits)

Forest
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...to produce model daily output

X, Y, .M , DAY , LAYER,HEIGHT , DBH, AGE , SPECIES , MANAGEMENT , GPP, Av_TOT,Aj_TOT,A TOT,RG,RM,RA,NPP,BP,CUE,BPE,LAI PROJ,PEAK-LAI_PROJ,LAI EXP,D-CC_P,DBHDC,CR
©,0,1996,1,1,0,20.8198,24.2823,75,Fagussylvatica,T,©.06006€,0.06006€,0.0000,0.0000,0.0000,0.2025,0.2025,-0.2625,0.0600,0.0600,0.60000,0.60000,6.6000,0.6000,0.6
1,0,1996,1,1,0,20.8198,24.2823,75,Fagussylvatica,T,©.00600,0.0000,0.0000,0.0000,0.0000,0.2025,0.2025,-0.20825,0.0000,9.0600,0.0000,0.0000,6.0000,0.6000,0.06
2,0,1996,1,1,0,20.8198,24.2823,75,Fagussylvatica,T,©.0000,0.0000,0.0000,0.0000,0.0000,0.2025,0.2025,-0.2025,0.0000,0.0000,0.0000,0.0000,6.0000,0.0000,0.0
3,0,1996,1,1,0,20.8198,24.2823,75,Fagussylvatica,T,0®.0006,0.0000,0.0000,0.0000,0.0000,0.2025,0.2025,-0.2025,0.0000,0.0000,0.60000,0.60000,6.0000,0.0000,0.06
4,0,1996,1,1,0,20.8198,24.2823,75,Fagussylvatica,T,®.860606,0.06000,0.0000,0.00600,0.0000,0.2025,0.2025,-0.2025,0.06000,0.06000,0.60000,0.60000,6.0000,0.60000,0.06
5,0,1996,1,1,0,20.8198,24.2823,75,Fagussylvatica,T,©.00080,0.0000,0.0000,0.0000,0.0000,0.2025,0.2025,-0.2025,0.0000,0.0000,0.0000,0.0000,6.0000,0.0000,0.0
6,06,1996,1,1,0,20.8198,24.2823,75,Fagussylvatica,T,9.06006,0.06006€,0.0000,0.0000,0.0000,0.2025,0.2025,-0.2625,0.0€00,0.06€00,0.60000,0.60000,6.6000,0.6000,0.6
7,0,1996,1,1,0,20.8198,24.2823,75,Fagussylvatica,T,?.09000,0.0000,0.60000,0.0000,0.0000,0.2025,0.2025, -0.2625,0.0600,0.0600,0.60000,0.0000,6.60000,0.6000,0.06
8,0,1996,1,1,0,20.8198,24.2823,75, Fagussj : i - 4 pee,e.eeee0,0.0000,6.0000,0.0000,0.0
9,8,1996,1,1,0,20.8198,24.2823,75, Faguss ~ - pee,e.0000,0.0000,6.0000,0.0000,0.0
ie,6,1996,1,1,0,20.8198,24.2823,75,Fagus / peee,e.ee00,0.0000,6.0000,0.0806,0.

11,0,1996,1,1,0,20.8198,24.2823,75,Fagus
12,0,1996,1,1,0,20.8198,24.2823,75,Fagus
13,8,1996,1,1,9,28.8198,24.2823,75,Fagus
14,0,1996,1,1,0,20.8198,24.2823,75,Fagus
15,6,1996,1,1,0,20.8198,24.2823,75,Fagus
16,8,1996,1,1,0,208.8198,24.2823,75,Fagus
17,0,1996,1,1,0,20.8198,24.2823,75,Fagus
18,0,1996,1,1,0,20.8198,24.2823,75,Fagus ,
19,8,1996,1,1,90,28.8198,24.2823,75,Fagus {\
e,®,1996,1,2,08,20.8198,24.2823,75, Faguss
1,8,1996,1,2,0,20.8198,24.2823,75, Faguss
2,0,1996,1,2,0,20.8198,24.2823,75,Faguss
3,0,1996,1,2,0,20.8198,24.2823,75, Faguss
4,9,1996,1,2,08,20.8198,24.2823,75, Faguss
5,0,1996,1,2,08,20.8198,24.2823,75, Faguss
6,8,1996,1,2,08,20.8198,24.2823,75, Faguss
7,8,1996,1,2,08,20.8198,24.2823,75, Faguss
8,0,1926,1,2,0,20.8198,24.2823,75,Faguss
9,0,1996,1,2,0,20.8198,24.2823,75, Faguss
19,8,1996,1,2,0,28.8198,24.2823,75,Fagus
11,e,1996,1,2,0,20.8198,24.2823,75, Fagus
12,0€,1996,1,2,0,20.8198,24.2823,75,Fagus}
13,8,1996,1,2,0,208.8198,24.2823,75, Fagus:. o
14,0,1996,1,2,0,20.8198,24.2823,75, Fagus e
15,@,1996,1,2,@.2@.8198,24.2823,?5,Fagus,(;ﬂ
16,0,1936,1,2,0,20.8198,24.2823,75, Fagus .
1i7,0,1996,1,2,0,20.8198,24.2823,75, Fagus ™\
18,9©,1996,1,2,0,20.8198,24.2823,75,Fagussylvatica,T,?®.0000,0.06000,0.0000,0.0000,0.0080,0.2098,0.2098,

2e00,0.0000,0.0000,6.0000,0.0000,80.
2ee0,0.0000,0.0000,6.0000,0.0000,80.
29ee,0.0000,0.0000,6.0000,0.0000,80.
peee,e.eeee,0.0000,6.0000,0.0000,80.
peee,e.60000,0.0000,6.0000,0.0000,80.
peee,e.ee00,0.0000,6.0000,0.08606,0.
2ee0,0.0000,0.0000,6.0000,0.0000,80.
2ee0,0.0000,0.0000,6.0000,0.0000,80.
29e0,0.0000,0.0000,6.0000,0.0000,80.
pee,e.0000,0.0000,6.0000,0.0000,0.
pee,e.0eee8,6.0000,6.00008,0.0000,0.
2ee,0.0000,0.0000,6.0000,0.0000,0.
2ee,0.0000,0.0000,6.0000,0.0000,0.
2ge,e.0000,0.0000,6.0000,0.0000,0.
pee,e.eeee,0.0000,6.0000,0.0000,0.
pee,e.0000,0.0000,6.0000,0.0000,0.
pee,e.0eee8,6.0800,6.00008,0.0000,0.
2ee,0.0000,0.0000,6.0000,0.0000,0.
2ee,0.0000,0.0000,6.0000,0.0000,0.
29ee0,0.0000,0.0000,6.0000,0.0000,80.
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...but more practically (an understandable annual model output)
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...but more practically (an understandable annual model output)
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Different models for different purposes (and some examples with strengths and limitations)

Annual Net Primary Production
LPJ with CRU climatology
Equilibrium

s T
0 250 500 750 1000
gC/m2

e Y

AN
Dynamic Global Vegetation Models Gap Models Species Distribution Models
LPJ ForClim BIOMOD
from regional to global (0,5° * 0,5°) stand level (1/12ha ca. 833m?) *No biological explanation
*PFT's *Few numbers of input data «Statistical model
*Process-Based Model *Low process resolution representation *Wide applicability
*Low spatial and temporal resolution *Low computational demand *Black box
Limited applicability to species level Limited applicability
and

. - . , No explation of the
to regional and potentially impossible :

, : : behaviour observed

low processes’resolution representation to global level

Marecheux et al. 2021
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What about the Forest Modelling Lab. (the 3D-CMCC-FEM)

Current Stand Conditions Predicted Future Conditions

Simulate stand growth and development under current and future environmental conditions
Bio-chemical, Bio-physical, Process-Based Model

Couple the Process-Based models’ robustness of the layer and cohort models

Variable temporal scale(daily to annual)
Variable spatial scale (1ha to x Km?)
Management (thinning, harvest, replanting)

Forest
modelling
Lab.
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3D-CMCC-FEM Biophysical processes:

Biogeophysics — Energy, Moisture, Momentum

© SURFACE ALBEDOS @

© RADIATIVE TRANSFER \ N
@9» o5 4

© SENSIBLE HEAT (under development) AND LATENT HEAT FLUXES . % 2t

® SOILAND SNOW TEMPERATURE
® CANOPY TRANSPIRATION

E 2
:

® CANOPY INTERCEPTION

Frecipitation

® SOIL EVAPORATION Interception

Evaparation

Transpiration

® SNOW

oughfall
Sternflow

® SURFACE RUNOFF AND INFILTRATION

Sublimation X
Evaparation

Infiltration Surface Runoff
—

® SOIL WATER CONTENT Melt

Drainage

Forest
modelling
Lab.

@ .



3D-CMCC-FEM Biochemical processes:

O C.Ehﬂn Dioxide Sun
® CANOPY PHOTOSYNTHESIS
® AUTOTROPHIC RESPIRATION forwn W s 3
| [ 513 "
® HETEROTROPHIC RESPIRATION of rou
Fuels
® CARBON ALLOCATION e
® NSC-Dynamic
® WOOD PRODUCTION " o
tien
® PHENOLOGY warer "D A R epion
corbon W [brﬂm'ng}
i in T Litte
® Changesin Forest STRUCTURE Fall amnd Bl o
® LITTERFALL production i Wator
RBON CYCLE Chemistry

® in CHympic's Form s
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3D-CMCC-FEM Model Flowchart:
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3D-CMCC-FEM Model core logic-structure

m->cells[cell].heights[height] .dbhs[dbh].ages[age].species[species].value[variable]

m->cells[cell].soils[soil].value[variable]

__________________

Rh

X
matrix soils Soilpool N\ | | |
[C. N] > value

- Forest model i:lasses

DBH

—> Heights
1
_____ VI N
Ly
N .

Forest
modelling
Lab.

I% species-PFTs

-

Y R R Lo Yoo e Voo ]

_“(_“hni_)“—' ! Lo evergreen-(E) i i deciduous-(D) :

: CO Or S : I I ........................... e s i it et s Em s e s e
e Voo | I Voo .
' coppice-(C) i E timber-(T) ;

i under work



Input/output model data and simulation options

) 4 ) 4

=) " Lindisturbed opror
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Process-Based Model (PBMs) — Make predictions on climate change

Changes in phenology under different climate forcing scenarios from 2000 to 2100

GPP gl m™ manth™!

Sorow Far Hyytala Far
&S00 TRANS MANAG 350 TRANS MANAG
: RCE=DD I I I - I I I I : : RCL=00 I ‘ ‘ ' : I
| == :\Temperate | = Boreal
= RCP=6.0 RCP=6.0
RCP=8.5 \ RCP=8.5
250+
N — 1717 SoARS : 8 200
300 - \ e
20.150-
200 ?'D
100 -
100 -
50._
0 J J A é o] M 0 n
Soroe site (Denmark) Hyytiala site (Finland)
Fagus sylvatica Pinus sylvestris
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Process-Based Model (PBMs) — Make predictions on forest management

What happens if we manage forests?

) First thinning when | Thinning events when Clearcut when density <
Rdi dominant height > h,,. Rdi > Rdiarger + SR

dens um OF Age > age g,y

(Bellassen et al. 2010)

- N

N v
Selr-thinning Anthropogenic thinning Clearcut

Natur_al —— Managing forests >
evolution

Initial state (real case) Thinning Thinning Clearcut and replanting

Initial state — Final Staté2



Testing Management Vs. No Management Under Climate Change
Net Primary Productivity

EMEN -26-Ctrl -M--N
15 Hyytiala a
10
5

B T s

EMEN -45-Ctrl -M--N
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e e

EMEN -6.0-Ctrl -M--N
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SR A
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5
0- OFT PT PT PT PH PT PT OTPTPTPTPPTPT OTPTPTPTPH‘PTPT OT PT _PT _PT PH PT PT
2010 2050 2090 2010 2050 2090 2010 2050 2090 2010 2050 2090
YEAR YEAR YEAR YEAR
—— ] UnManaged I Managed
modelling . . . . . . .
 Lab. OT = observed thinning, PT = prescribed thinning, PH = prescribed harvesting

(Collaltiet al., 2018)



Testing Management Vs. No Management Under Climate Change
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EMEN -26-Ctr
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What about future forest management?

Present-day climate Future climate
2 EMEN -26-Ctrl -M--N
Q9% Bily Kiiz e
x 750
]
2 500
D C3'p CI13pi1sc p! 2250
Business as usual § oloterererererer
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Wil — 22

D ¢
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Process-Based Model (PBMs) — Testing long-lasting ecological theories

Question: Plant respiration is controlled by photosynthesis or biomass?

2000

= 10,000
« 15001 S 1,000
E o=
s = w100
& " 2  10-
500 T © 14
| ‘ 0.1
° 1] 5;)0 1000 15IDD 2000 2500 3000 3500 061 I 1' I '| EI}U I '| D,[IJDD
GPP,(gCm?yr") Total plant mass (g)
(Waring et al. 1998, Tree Physiology) (Reich et al. 2006, Nature)
H,: “Respiration is controlled by photosynthesis” H,: “Respiration is controlled by (total) biomass”

8-

Results: none of these two hypotheses are actually correct!

Forest
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Process-Based Model (PBMs) — Testing long-lasting ecological theories

If respiration would be controlled only by
photosynthesis in winter, when
photosynthesis is stopped, all live cells
would die. However, there have been found
many live cells older than year

5

1.400 | (b) Photosynthesis

H,: Respiraf m@@ﬁ@j

~ o ~n A e 2NN
e AT L T NP L Vs D W KA

PV AN

600

k= oo e If respiration would be controlled only by
- biomass at increasing forest age respiration
raoo | (©) TRp e . &l would became too high, consuming too

bl LTS S @ much carbon, and trees would completely

T e p e die when mature

5 00 | 2SS N

2 - LSS

Autotrophic respiration

i = W = w oo w o= w o= w o= W = W
= ® ® o=z Ss s g2 =2 40w s =8 o9

Stand age (years)
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Process-Based Model (PBMs) — Testing long-lasting ecological theories

Conclusion: Respiration is controlled by both photosynthesis and biomass
at a variable extent, which we do not currently know,
but somewhere in between the two hypotheses (both excluded)
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Conclusions: Strengths and present limitations of forest models (some)

Some present strengths:

« Possibility to simulate effects of climate change (CO, fertilization effects, Temperature
acclimation, ...)

« Simulate eco-physiological processes of heterogeneous forests with complex structure
* Consider forest structure evolution (i.e. vertical and horizontal heterogeneity)
«  Simulate and quantify light and water competition

* Possibility to be spatially upgraded from local scale to regional scale reducing the
amount of the needed initialization data

Some present limitations:

« Relatively high request of input data and parameters
*  High computationally demanding
«  Still, to some extent, uncertain
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