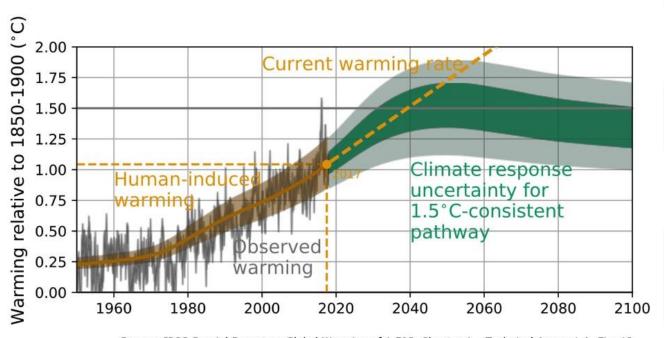
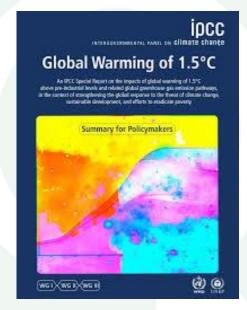


Necessità ed esperienze di monitorraggio degli effetti del clima sulle foreste italiane Monitoring on the effects of climate on Italian forests: needs and experiments

Renzo Motta (DISAFA)

PALERMO | 11 NOVEMBRE 2019


LIFE E RETE NATURA 2000


Dall'esperienza dei Progetti verso un modello condiviso per la Gestione Forestale

LIFE AND NATURA 2000 NETWORK
From Projects experience to a shared model for Forest Management

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level

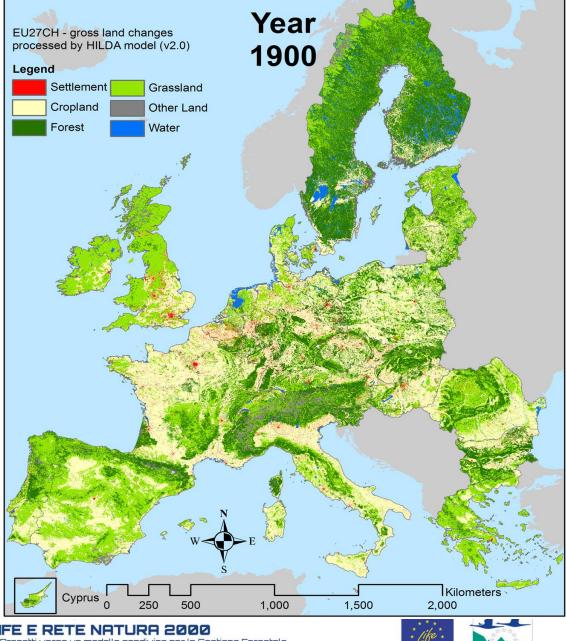
Source: IPCC Special Report on Global Warming of 1.5°C, Chapter 1 – Technical Annex 1.A, Fig. 12

Forest Cover (Italy) 1900 about 18% 2005 INFC 34,3% 2015 INFC 36,4% 2019 IUTI 38,0%

>100% in one century + 2,1% in the last decade

Forest increment + 25% in the last century (climate, land use change, nitrogen ecc.)

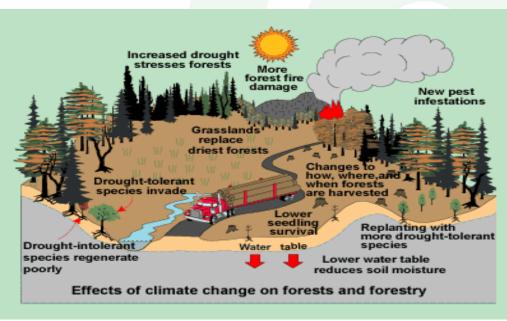
Global Change Biology


Global Change Biology (2015) 21, 299-313, doi: 10.1111/gcb.12714

Gross changes in reconstructions of historic land cover/ use for Europe between 1900 and 2010

RICHARD FUCHS¹, MARTIN HEROLD¹, PETER H. VERBURG², JAN G.P.W. CLEVERS¹ and

Laboratory of Geoinformation Science and Remote Sensing, Wageningen University, Wageningen, The Netherlands, Institute for Environmental Studies, VU University Amsterdam, Amsterdam, The Netherlands, Institute for Geography, Friedrich Schiller

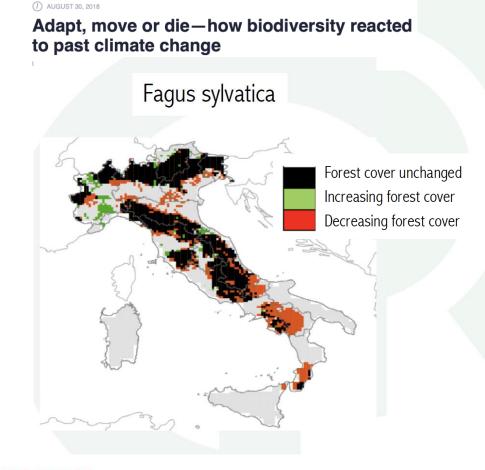


Climate crisis impact on forests

- Long-term change (species ecological traits)
- 2) Short term change (natural disturbances regime)

PALERMO | 11 NOVEMBRE 2019

LIFE E RETE NATURA 2000



Climate crisis impact on forests

1) Long-term change (species ecological traits)

- 2) Short term change (natural disturbances regime)
 - Latitudinal range
 - Elevation range
 - Individuals or populations that currently live at the ecological border
 - New species (alien or not)

Do we really know the ecological traits? The silver fir case

PALERMO | 11 NOVEMBRE 2019

LIFE E RETE NATURA 2000

journal homepage: www.elsevier.com/locate/foreco

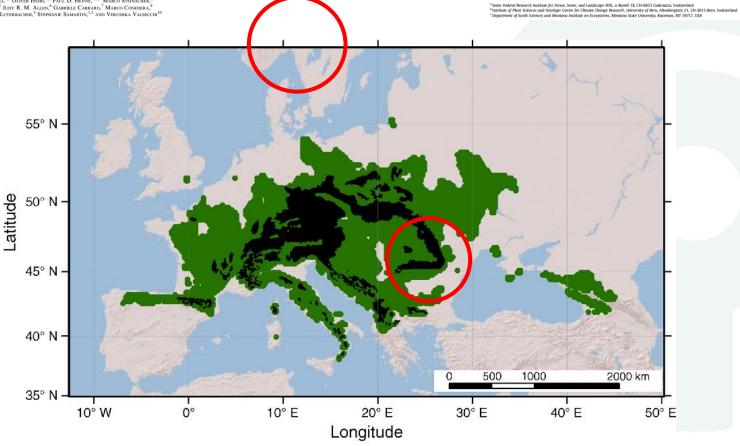
European Journal of Forest Research https://doi.org/10.1007/s10342-019-01192-4

ASSMANN REVIEW

Forest Ecology and Management

Ecological Monographs, 83(4), 2013, pp. 419-439 © 2013 by the Ecological Society of America

The past ecology of Abies alba provides new perspectives on future


responses of silver fir forests to global warming WILLY TINNER, ^{1,23,11} DANIELE COLOMBAROLI, ^{1,2} OLIVER HEIRI, ^{1,2} PAUL D. HEINE, ^{1,2,3} MARCO STEINACHER, ^{2,4} JOHANNA UNTENIECKER, ² ELISA VISCONI, ^{1,3} JUDY R. M. ALLEN, ⁶ GABREILE CARRARO, ⁶ MARCO CONDERA, ⁸ FORTUNAT JOGA, ⁶ ANDER E. INCHER, ⁵ JUGA CHERRAROLIER, ⁵ STEINANIE SAMMENT, ⁵ AND VERSURAN CALSISCOLIE ⁶ What is the potential of silver fir to thrive under warmer and drier

Insights about past forest dynamics as a tool for present and future forest management in Switzerland *

PALERMO | 11 NOVEMBRE 2019

LIFE E RETE NATURA 2000

ARTICLE

DOI: 10.1038/s41467-018-04096-w

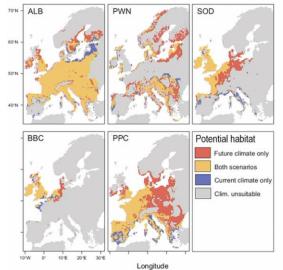
OPEN

Invasive alien pests threaten the carbon stored in Europe's forests

Rupert Seidl o 1, Günther Klonner², Werner Rammer¹, Franz Essl², Adam Moreno^{1,3}, Mathias Neumann o 1 & Stefan Dullinger²

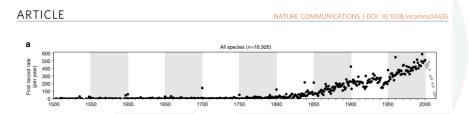
ARTICLE

Received 16 Feb 2016 | Accepted 28 Dec 2016 | Published 15 Feb 2017


DOI: 10.1038/ncomms14435

OPE

No saturation in the accumulation of alien species worldwide

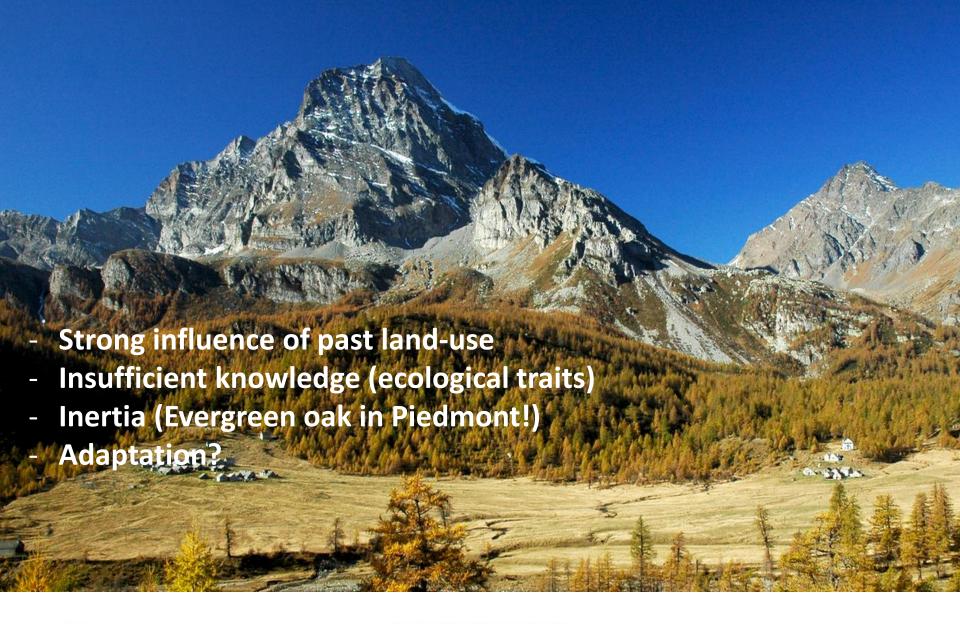

Hanno Seebens et al.#

Potential spread of invasive alien pests

Asian long-horned beetle (ALB), pinewood nematode (PWN) and pitch pine canker (PPC) could establish on > 1 Mill. km² already under current climate

Climate change until 2050 will increase the potential range of pine pests (PWN and PPC) by ~50%

Alien species and climate change

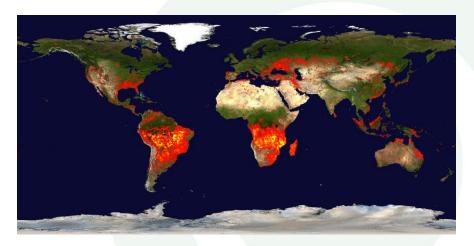


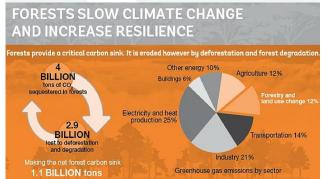
PALERMO | 11 NOVEMBRE 2019

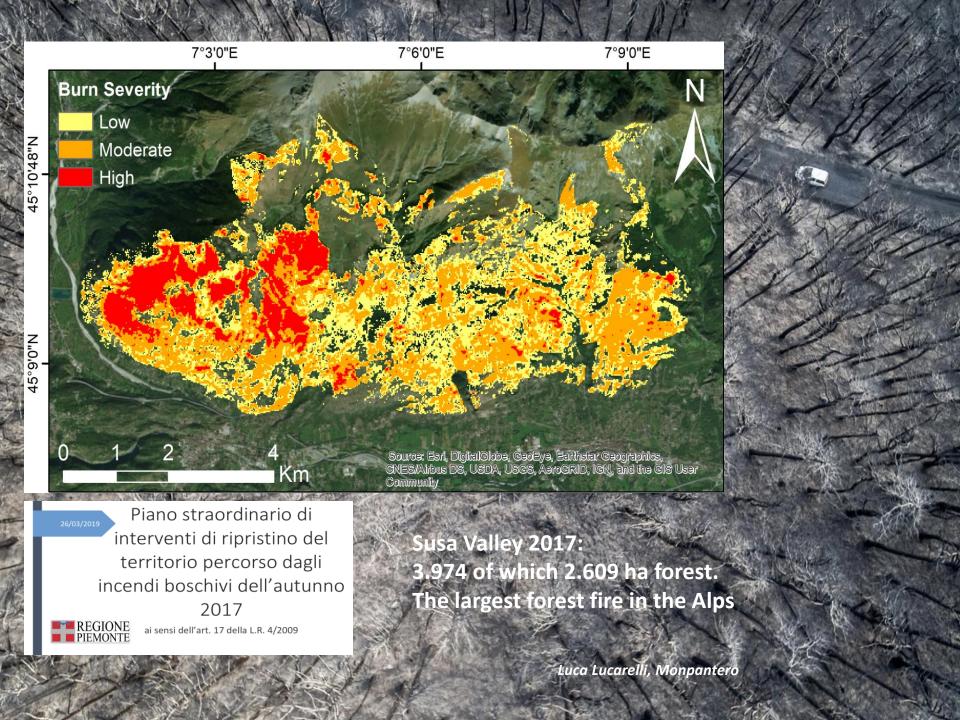
LIFE E RETE NATURA 2000

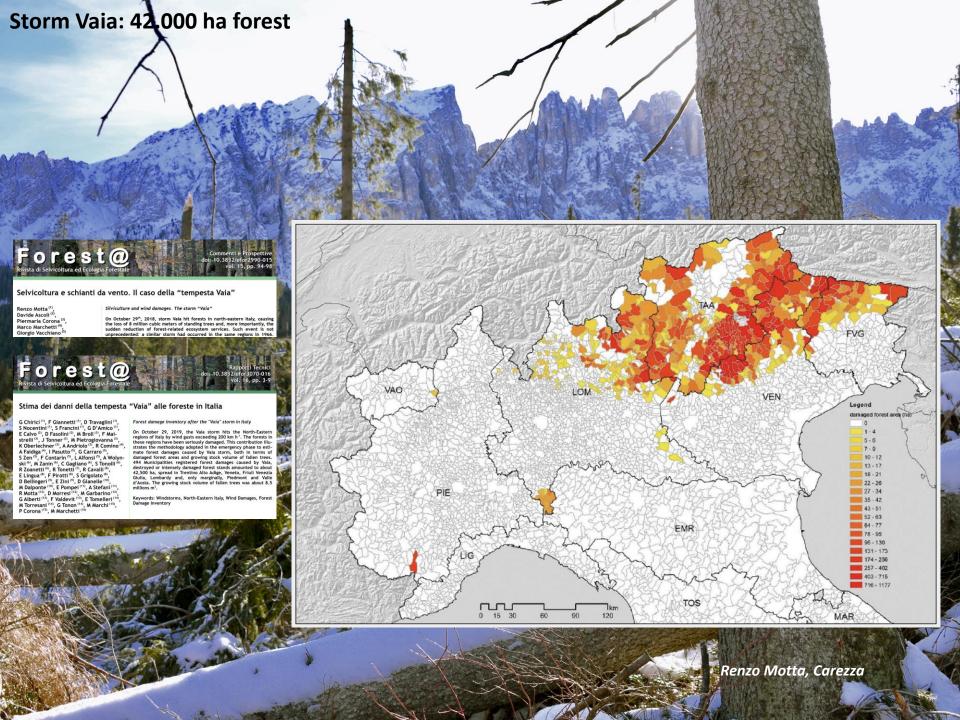
PALERMO | 11 NOVEMBRE 2019

LIFE E RETE NATURA 2000

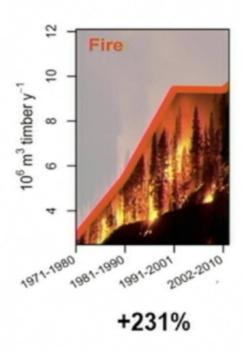


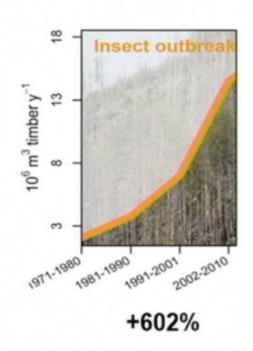

Climate crisis impact on forests

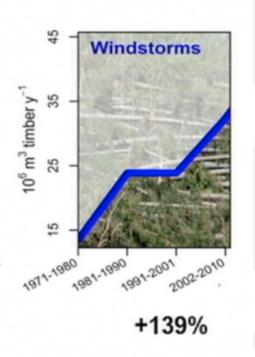

- Long-term change (species ecological traits)
- 2) Short term change (natural disturbances regime)


the set. But I want to the transfer to the second set the second second

- -Forest fires
- -Storms
- -Insect outbreaks
- -Drought




Natural disturbances in the European forests in the 19th and 20th centuries


MART-JAN SCHELHAAS*†, GERT-JAN NABUURS*† and ANDREAS SCHUCK†
*Alterra, Green World Research, PO Box 47, NL-6700 AA Wageningen, The Netherlands, †European Forest Institute,
Torikatu 34, FIN-80100, Joensuu, Finland

Increasing forest disturbances in Europe and their impact on carbon storage

Rupert Seidl, 1,* Mart-Jan Schelhaas, 2 Werner Rammer, 1 and Pieter Johannes Verkerk3

percent change relative to 1971 – 1980

In the last 40 years the forest area damaged by natural disturbances has significantly increased. Climate change?=

PALERMO | 11 NOVEMBRE 2019

LIFE E RETE NATURA 2000

Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape

Dominik Thom^{1,2}, Werner Rammer¹, Rita Garstenauer³, and Rupert Seidl¹

Anthropocene 6 (2014) 63-74

Contents lists available at ScienceDirect

Anthropocene

Fire, humans and landscape in the European Alpine region during the

E. Valese a,*, M. Conedera b, A.C. Held c, D. Ascoli c

Global Change Biology (2006) 12, 1435-1450, doi: 10.1111/j.1365-2486.2006.01188.x

The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps

SABINE SCHUMACHER and HARALD BUGMANN
Swiss Federal Institute of Technology Zurich, Department Environmental Sciences, Forest Ecology, CH-8092 Zurich, Switzerland

Ann. For. Sci. 67 (2010) 701 © INRA, EDP Sciences, 2010 DOI: 10.1051/forest/2010026 Available online at: www.afs-journal.org

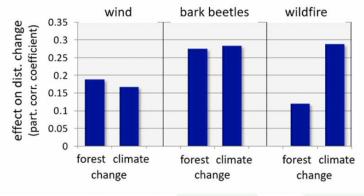
Original article

Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley

Urs GIMMI*, Thomas WOHLGEMUTH, Andreas RIGLING, Christian W. HOFFMANN, Matthias BÜRGI

Territorio, bioeconomia e gestione degli incendi: una sfida da raccogliere al più presto

Marco Marchetti (1) Davide Ascoli (2) Landscape, bioeconomy and wildfire management: a challenge to face very


Forest fires are increasing in all developed temperate countries and especially in Southern Europe. An unprecedented forest transition is more and more due loand abandomient on one side and, on the other side, to the lack of awareness in orban culture about ecological processes and dynamics. Williams Urban culture about ecological processes and dynamics. Williams Urban for people especially where fuel is not managed, urban areas are not planned at all and landscape is not properly planned in an integrated way. We need integrated and transversal measures by converging fire prevention programs with the RDP measures for the agno-forestry-pastoral sector and the nature conservation agends; that is, encouraging agricultural, pastoral and forestry favouring the bioeconomy where forest planning has identified strategic areas for fire prevention.

Keywords: Fire Planning and Forest Policies, Megafires, Deep Causes and Increase of Fire Passage Severity, Territorial Factors and Socioeconomics

Drivers of disturbance change in Europe

Climate change is an important driver of increasing disturbances ...but...

also management contributed (via changes in forest structure and composition)

Seidl et al. (2011, Glob. Change Biol.)

Most important "driver" of current natural disturbance regime is the land-use change (more for fire than for wind and bark beetles)

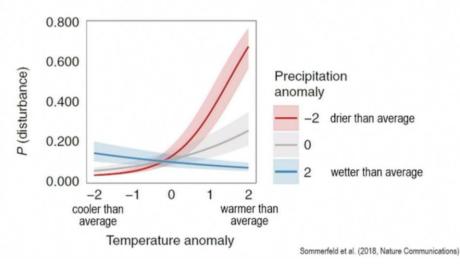
PALERMO | 11 NOVEMBRE 2019

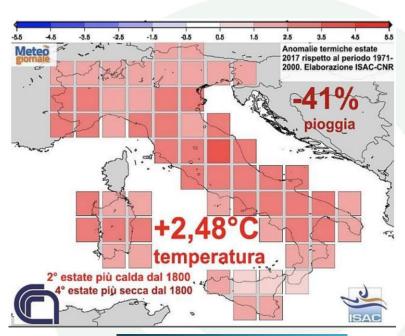
LIFE E RETE NATURA 2000

nature REVIEW ARTICLE climate change PUBLISHED ONLINE. 31 MAY 2017 I DOI: 10.1038/NCLIMATE3303

ARTICLE
DDB: 10.1038/6/1467-018-06788-9 OPEN

Patterns and drivers of recent disturbances across the temperate forest biome


Andreas Sommerkeld B¹, Contellus Serfig ¹², Brian Burna B¹, Anthony W. D'Andreagh ⁴,
Tablean December B¹, Spacia Dilaz-Hormatalini, "Shawn Frange", Lee E-riello B², Anburn G. Gutleresch Z¹,
Deminik Kalderveller ², Powel E-domersey B², Alvar S. Morelli, "Shawlin Miller B², Jan Perfection B²,
George L. W. Perrye B², Scott L. Stephene³, Mireslav Suchdark, Monista G. Turner g², Thoman T. Vedeler³ Sa.


Fagna Section 1.

Forest disturbances under climate change

Rupert Seidl¹¹, Dominik Thom¹, Markus Kautz², Dario Martin-Benito³⁴, Mikko Peltoniemi⁵, Giorgio Vacchiano⁴, Jan Wildz³², Davide Ascoli³, Michal Petr³o, Juha Honkaniemi⁵, Manfred J. Lexer¹, Volodymyr Trotsiuk¹ı, Paola Mairota¹², Miroslav Svoboda¹ı, Marek Fabrika¹ı, Thomas A. Nagel¹¹¹⁴ and Christopher P. O. Reyer¹⁵

Analysis of 50 forest landscapes throughout the temperate biome Large-scale, severe disturbances are consistently linked to warm and dry years

We expect an increment of frequency and intensity of natural disturbances due to climate change!

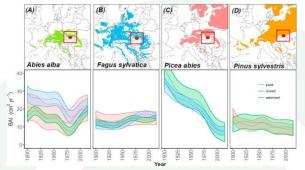
PALERMO | 11 NOVEMBRE 2019

LIFE E RETE NATURA 2000

PALERMO | 11 NOVEMBRE 2019

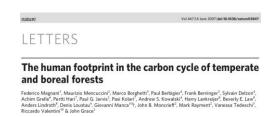
LIFE E RETE NATURA 2000

What we need to monitor? What are the correct indicators?



Forest Ecology and Management Volume 446, 15 August 2019, Pages 293-303

Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest


Michal Bosela ^a A 🖾 , Ladislav Kulla ^b, Joerg Roessiger ^b, Vladimír Šebeň ^b, Laura Dobor ^c, Ulf Büntgen ^{d, c, f} Martin Lukac ^{c, g}

- Forest regeneration/structure?
- Dieback/mortality?

- Forest growth?

- Forest resistance?
- Forest resilience?
- Exotic/alien species?

SPECIAL SECTION

 $FOREST\,HEALTH$

Forest health and global change

S. Trumbore,^{1,2}" P. Brando,^{3,4} H. Hartmanı

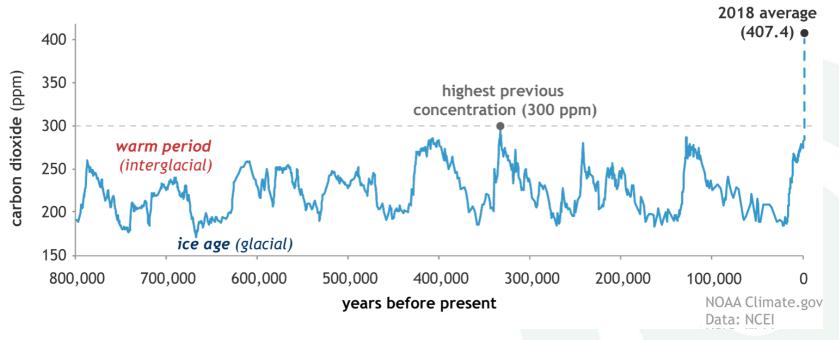
Humans rely on healthy forests to supply energy, building materials, and food and to provide services such as storing carbon, hosting biodiversity, and regulating climate. Defining forest health integrates utilitarian and ecosystem measures of forest condition and function, implemented across a range of spatial scales. Although native forests are adapted to some level of disturbance, all forests now face novel stresses in the form of climate change, air piclution, and invasive pests. Detecting how intensification of these stresses will affect the trajectory of forests is a major scientific challenge that requires developing systems to assess the health of global forests. It is particularly critical to identify thresholds for rapid forest decline, because it can take many decades for forests to restore the services that they provide.

Article Open Access | Published: 04 April 2018

Long-term response of forest productivity to climate change is mostly driven by change in tree species composition

Xavier Morin ☑, Lorenz Fahse, Hervé Jactel, Michael Scherer-Lorenzen, Raúl García-Valdés & Harald Bugmann

Scientific Reports 8, Article number: 5627 (2018) | Cite this article


PALERMO | 11 NOVEMBRE 2019

LIFE E RETE NATURA 2000

CO₂ during ice ages and warm periods for the past 800,000 years

The current situation (carbon dioxide concentration) has never been experienced by our planet in the last 800.000 years. So we can build scenarios but **we cannot validate them** because we don't have a reference

Opinion

Challenges in elevated CO₂ experiments on forests

ESF-Forest FACE Group Carlo Calfapietra¹, Elizabeth A. Ainsworth^{2,3}, Claus Beier⁴, Paolo De Angelis⁵, David S. Ellsworth⁶, Douglas L. Godbold⁷, George R. Hendrey⁸, Thomas Hickler⁹, Marcel R. Hoosbeek¹⁰, David F. Karnosky¹¹, John King¹², Christian Körner¹³, Andrew D.B. Leakey³, Keith F. Lewin¹⁴, Marion Liberloo¹⁵, Stephen P. Long³, Martin Lukac¹⁶, Rainer Matyssek¹⁷, Franco Miglietta¹⁸, John Nagy¹⁴, Richard J. Norby¹⁹, Ram Oren²⁰, Kevin E. Percy²¹, Alistair Rogers^{14,3}, Giuseppe Scarascia Mugnozza²², Mark Stitt²³, Gail Taylor²⁴ and Reinhart Ceulemans¹⁵

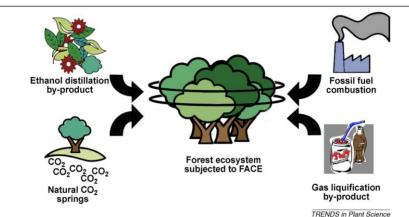


Figure 2. Natural versus artificial CO2 sources to be considered for future experiments on forests to contain CO2 costs.

CLIMATE CHANGE

Swiss university prepares for twenty-year forest experiment

PALERMO | 11 NOVEMBRE 2019

<u>Cell</u>

LIFE E RETE NATURA 2000

- Permanent plots (Forest reserves, LTER, long-term silvicultural experiments...)
- Adaptation (genetic, ecological traits...)
- New tools (satellite sensors, ecophysiological experiments, field manipulations...)
- "Prudential" indicators (number of species, new aliens, crown transparency, dieback or mortality...)

Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers

IGNACIO BARBEITO, 1,3 MELISSA A. DAWES, 1 CHRISTIAN RIXEN, 1 JOSEF SENN, 2 AND PETER BEBI 1

¹WSL Institute for Snow and Avalanche Research (SLF), Flüelastrasse 11, CH-7260 Davos, Switzerland ²Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8093 Birmensdorf, Switzerland

- Importance of long-term experiments and long-term monitoring
- LONG term!

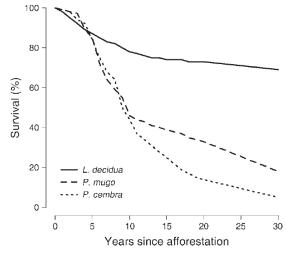


Fig. 2. Survival curves for three high-elevation conifers (*Larix decidua, Pinus mugo* ssp. *uncinata*, and *Pinus cembra*) for the period 1975–2005. For each species, survival is expressed as a percentage of the $\sim \! 30\,000$ trees per species planted as seedlings.

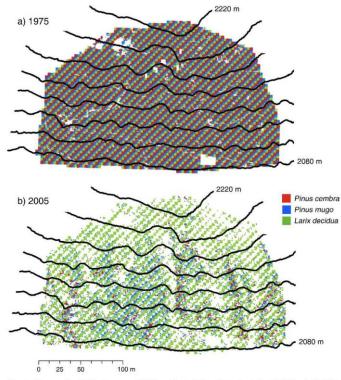


Fig. 1. Tree species distribution map of Stillberg, Central Alps, Switzerland, in: (a) 1975 and (b) 2005.

PALERMO | 11 NOVEMBRE 2019

LIFE E RETE NATURA 2000

