

European Geosciences Union General Assembly 2018 Vienna, Austria, 08 – 13 April 2018

Programme BG2: Terrestrial Biogeosciences

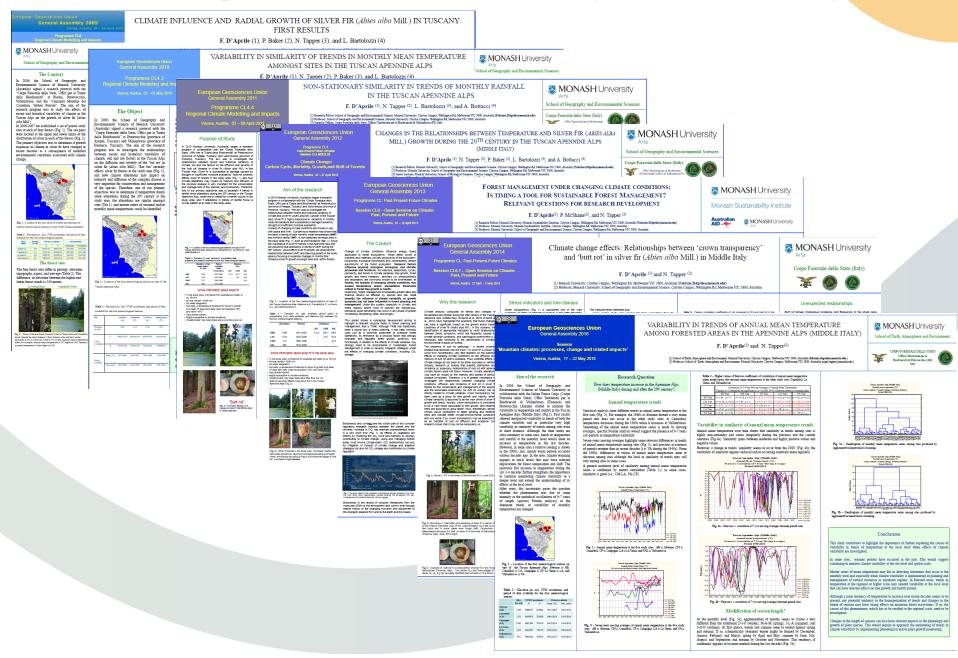
Session BG2.23 Forests under pressure: current knowledge and future science directions

Climate variability in forest management: The AForClimate project (Adaptation of FORest management to CLIMATE variability)

Fabrizio D'Aprile and Ugo Chiavetta Council for Agricultural Research and Economics (CREA) Research Centre for Forestry and Wood

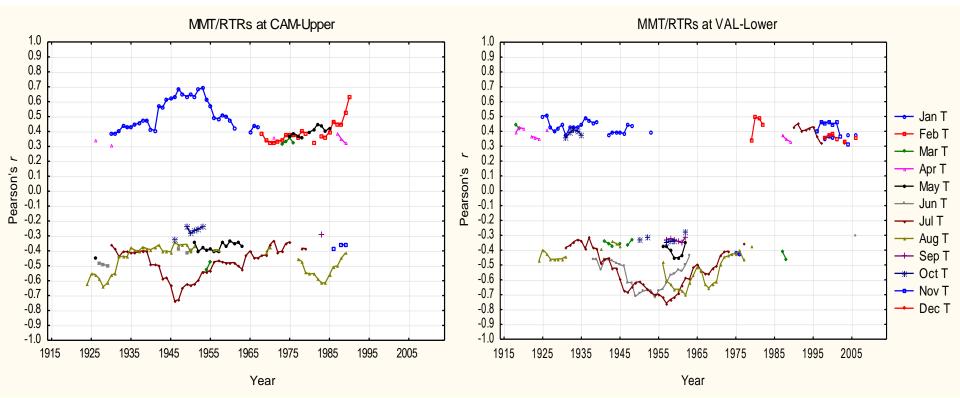
COORDINATOR

PARTNER



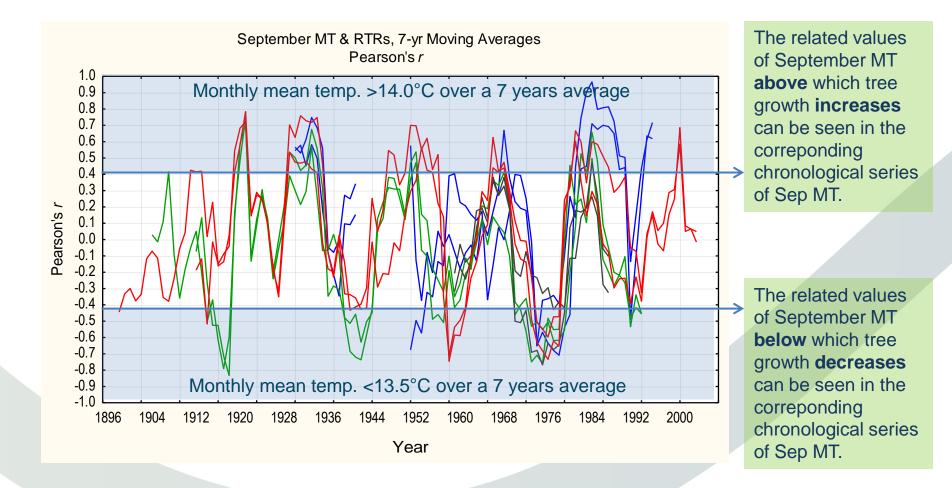
Forest management and climate variability in the EGU history

Rationale of the project


- Research shows that climate variability plays a relevant role in forest planning and management under climate change (D'Aprile *et al.*, 2013, 2012, 2009; Keenan, 2015; Albert *et* Schmidt, 2010; Lindner *et al.*, 2010).
- In forest planning and management, yield tables, site quality indices, age class, rate of growth, and spatial distribution are some of the most used tools and parameters. However, these methods do not take into account the influence of trends in climate variability on forest and tree growth although climate is the main driver of growth response.
- Changing climate conditions can impact on temperature and/or precipitation thresholds critical to forest tree growth; forest biomass, resilience, and CO₂ storage may be damaged.

Thus, forest planning and management need to implement the relationships between climate variability and trends of tree growth to mitigate the impacts of climate change on forest resilience, biomass, productivity, and CO₂ storage

Climate-growth relationship and its changes


Climate-growth relationships show that months related to tree ring growth have changed during the last century. For example, January MT is related to RTRs until the end of the mid 1960s at the upper site in Camaldoli (Italy) (m. 1111 asl) and February MT afterward (left). At a lower site (VAL) (850 m asl), cold months show irregular influence on tree ring growth and drier and warmer months (June, July, and August) show negative correlation with tree ring growth. However, July MT appears to be variably but usually related to ring growth while August MT tends to substitute June MT during time (right)

Statistically significant levels of correlation between MMT and RTRs at forest sites in the Tuscan Apennine Alps. Months where MMT is associated with RTRs change during the 20th century and their level of correlation can be highly non-stationary.

The Mean Temperature Thresholds

Setting the lag time for moving averages

	ABE Upper	ABE Lower	CAM Upper	CAM Lower	LAV Upper	LAV Lower	VAL Upper	VAL Lower	\checkmark
	(99.0)	(99.0)	(99.0)	(99.0)	(99.0)	(99.0)	(99.0)	(99.0)	-
	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	
\leq	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	\sim
	24.8	24.8	24.8	24.8	24.8	24.8	24.8	24.8	
	19.80	19.8	19.8	19.8	19.8	19.8	19.8	19.8	
	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	
	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	5
	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	
	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	
	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	
	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	
	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	
	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	/
	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	
(6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6)e
	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	
	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	
	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	
	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	
	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	•
	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	Ŭ
	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	£.,
	4.30	4.30	4.30	4.30	4.30	4.30	4.30	4.30	fr
	4.13	4.13	4.13	4.13	4.13	4.13	4.13	4.13	
	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	- fo
	3.81	3.81	3.81	3.81	3.81	3.81	3.81	3.81	
	3.67	3.67	3.67	3.67	3.67	3.67	3.67	3.67	р
	3.54	3.54	3.54	3.54	3.54	3.54	3.54	3.54	P
	3.41	3.41	3.41	3.41	3.41	3.41	3.41	3.41	a
	3.30	3.30	3.30	3.30	3.30	3.30	3.30	3.30	g
	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	•
	3.09	3.09	3.09	3.09	3.09	3.09	3.09	3.09	•
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	
	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	р
	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	
	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	
	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	
	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61	
(2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	
(2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	
	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	
	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	
	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	
	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	
	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	
	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	
	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	
	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	
	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	

Mean: 99.0;	6.64 x 15 = 99.6 (99.0)
Mean: 49.5;	6.64 x 7 = 46.5 (46.2)
Mean: 33.0;	6.64 x 5 = 33.2 (33.0)
Mean: 19.8;	6.64 x 3 = 19.9 (19.8)
Mean: 13.3 :	6.64 x 2 = 13.3 (13.2)

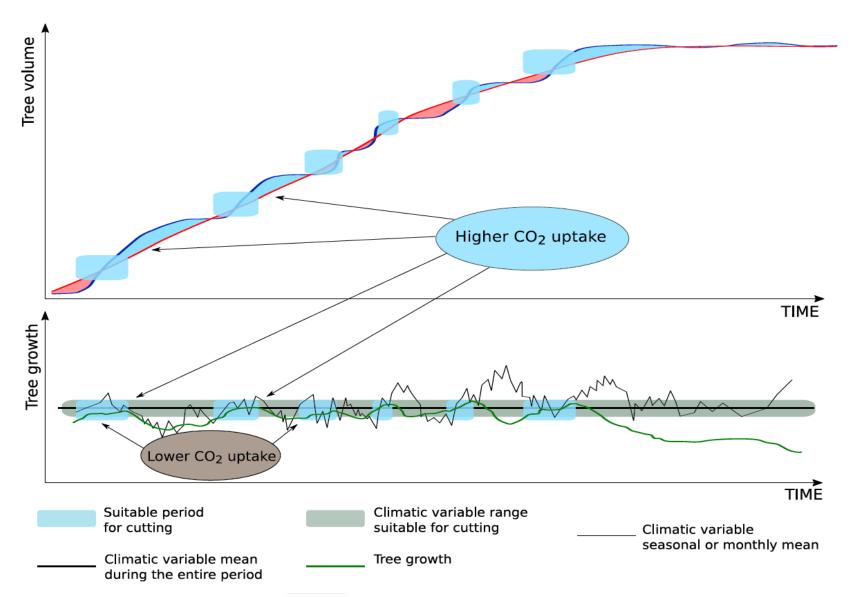
Mean = 6.64 (6.6)

• Periods (years) that are shown most frequently in the RSE of **tree ring series** as found **by Fourier spectral analysis**. Peak periods are yellow, secondary peak periods are gray.

• Temperature and tree rings show similar periods (and subperiods)

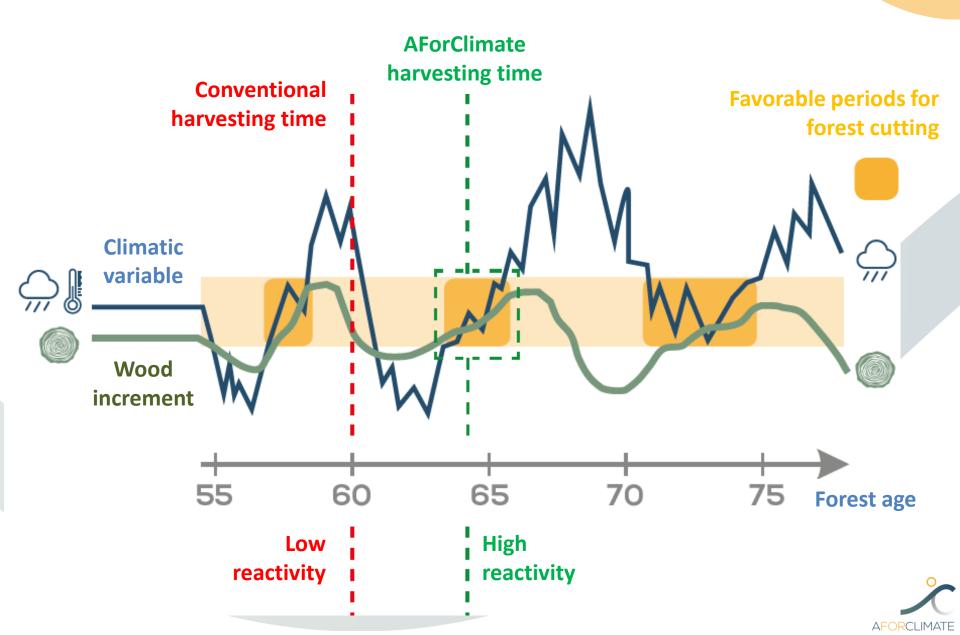
Hypothesis: tree ring growth follows the same cycles/periods of mean temperature

AForClimate Objective

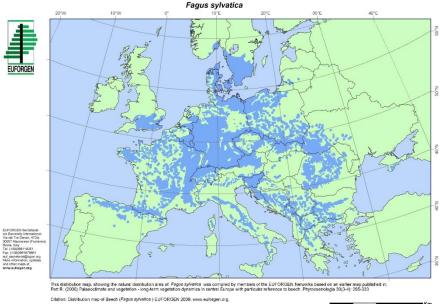

General Objective

To preserve and improve the efficiency of beech forest ecosystems through an effective forestry planned on the basis of climate variability and trends

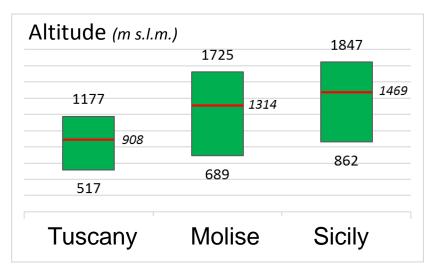
- Estimate the likely impacts of climatic factors on forest growth in order to manage forests by ways that preserve resilience;
- Distribute the wood mass harvested over periods with climate conditions favorable to growth
- Take into account forest regeneration



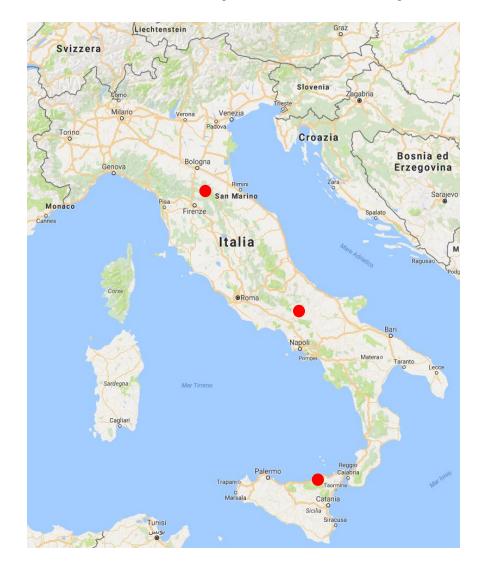
The AForClimate concept



The AForClimate proposal



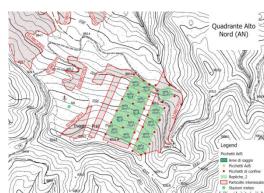
Demonstration areas



First published online on 30 August 2006 - Updated on 23 July 2008

0 250

NORTH-SOUTH Transect in the southern extreme of beech range in three Italian Regions: Tuscany, Molise and Sicily


The team

	Acronym	Name	Туре	Role in the project
Cree a grubh Creifige per la forma a grubh Creifige per la forma a grubh	CREA	Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria Centro di ricerca per la selvicoltura	Public body Research Centre	Coordinator beneficiary
	CDF	Compagnia delle foreste	SME Publisher	Responsible for communication and dissemination activities
	DSRTRS	Regione Siciliana Assessorato Regionale dell'Agricoltura dello Sviluppo rurale e della Pesca Mediterranea	Public body Regional Forest Service	Responsible for the implementation of the project in Sicily
	DREAM	D.R.E.AM. Italia società cooperativa agricolo forestale	SME Forestry Enterprise	Technical Manager Financial and Administrative responsible
UNIVERSITÀ DECLI STUDI DI PALERMO	DSAF	Università degli studi di Palermo Dipartimento Scienze Agrarie e Forestali	Public body University	Implementation leader of monitoring in Sicily
Realizer Mount	REGMOL	Regione Molise	Public body Regional Forest Service	Responsible for the implementation of the project in Molise
	UMMUGE	Unione Montana dei Comuni del Mugello	Public body Local Forest Service	Responsible for the implementation of the project in Tuscany
Università decli Studi del Molise	UNIMOL	Università degli Studi del Molise Dipartimento di Bioscienze e Territorio	Public body University	Implementation leader of monitoring in Molise Coordinator for defining guidelines

AFORCLIMATE

	10000			10000	10000							200				100.00	1000			-		-	-		
AZIONE		16			17				18				19				20		1	20			20	22	
ALIONE	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	
A1																									
A2															6										1 Salla
C1																									
C2																									
C3																									
C4																									
C5																									
C6																									
D1																									
E1																									
E2																									
E3																								「「」	TO THE ACCORD
E4																									
F1																								1	
F2																									
F3																								100	1
F4																									
	-	-		-		_					-								-			-			

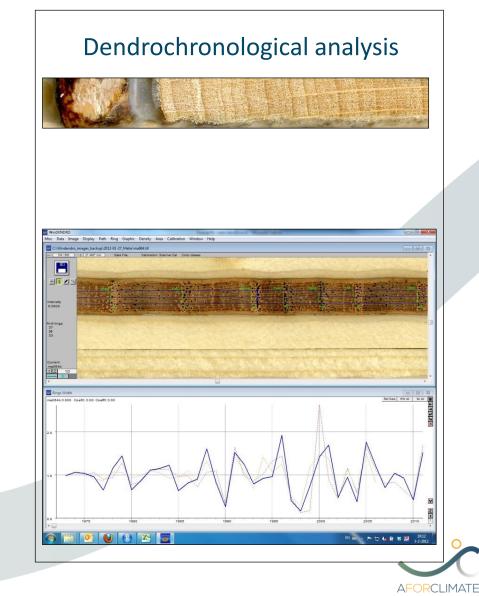
Expected applicative results

R1 - Identification of **climatic parameters** (thresholds) that mainly affect the reactivity of ecosystems of beech forests

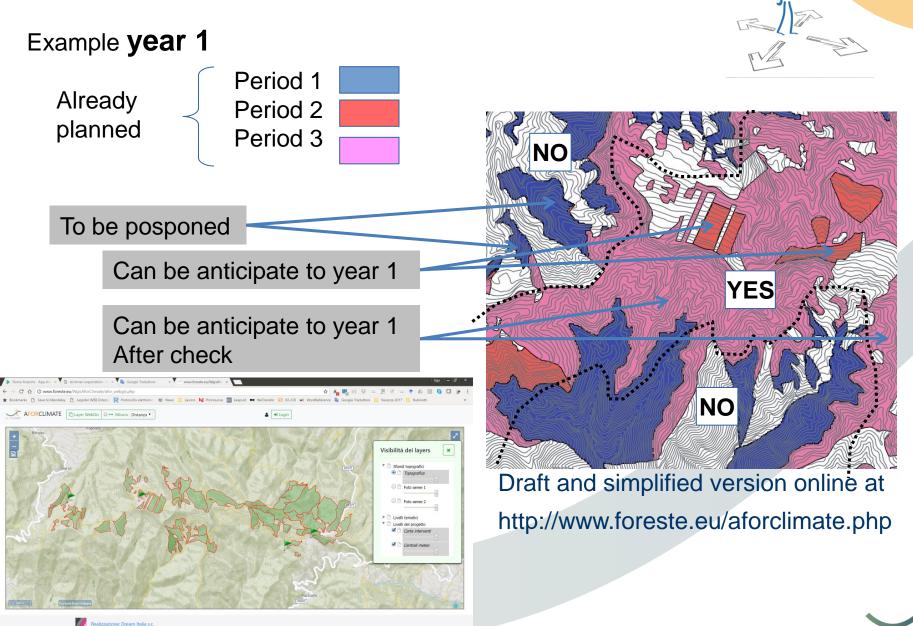
R2 - Development of **innovative methods of silviculture planning** based on climate variability

R3 - Monitoring and validation of the system through the replication of the experience

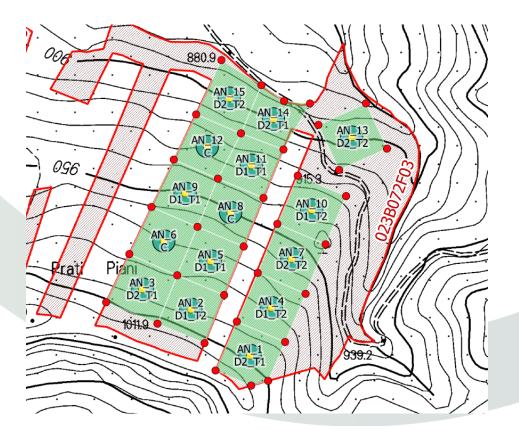
R4 - Ensure adequate visibility to disseminate results



Dendroclimatological analysis: Assesses the climate influence on tree growth


Climate monitoring through the positioning of 4 weather stations in each forest to measure all climate parameters (temperature, rainfall, snow and humidity)

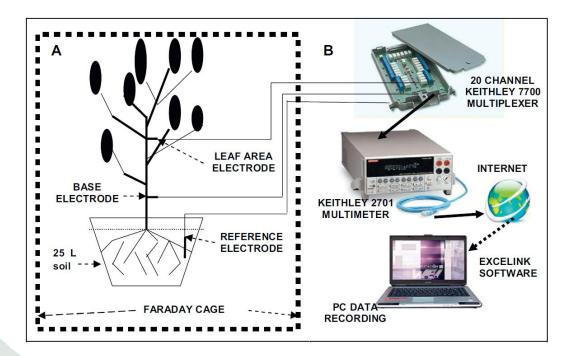
DSS (Decision Support System)

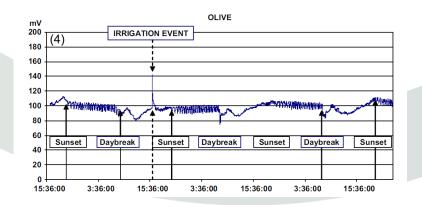

AFORCLIMATE

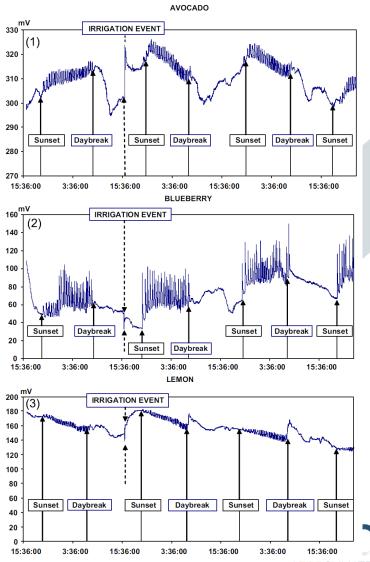
Monitoring and Validation

Design of a climate monitoring network in each demonstration area. 4 weather stations for each site located in 4 demonstration quadrant. The quadrants are combination of ASPECT (North and South) and ALTITUDE belt (high and low)

High-North and Low-South quadrants are upper and lower limit of local beech forests.







Electrophisiology

AFORCLIMATE

That's all! Thanks for your attention!

www.aforclimate.eu

fdaprile@aforclimate.eu

uchiavetta@gmail.com

