ADAPTING FORESTS TO CLIMATE CHANGE
SYMP SIUM
© FOREST-CLIMATE-CHANGE-SYMPOSIUMEU

Phenological monitoring to support sustainable Mediterranean beech planning for a resilient forest: Life AForClimate project
 Manuela Plutinol, Andrea Germanil, Cristiano Castaldil', Santopuoli G.2.4, Umberto Di Salvatore ${ }^{1}$, Ugo Chiavettal

(0) crea
(A.

Introduction

cycle, that expose trees to continuous fluctuations of pedo-climatic characteristics and biotic communities present within sites.Phenological traits are adaptive, genetically controlled, but also influenced by environmental factors (air temperature, water availability and photoperiod).They can affect not only the duration of the growing season, but also the population fitness and the species distribution range. Phenological monitoring istherefore considered a valuable tool to study the effect of climate change on species and provenances, to define their resilience and to modelling theirdistribution range in the near future.

AForClimate Project aims to adapt the forest planning of beech forests to climate variability, defining methods able to measuring the climatic factors that predispose and may preaict specific behaviors related to phenology, growth and resilience. Indeed, forestry practices can For these reasons during the project, starting from 2018, phenology is monitoring in two beech forests, the Giogo-Casaglia forest (Firenze, Toscana) and the Roccamandolfi forest (Isernia, Molise). Leaf and cambium phenology were monitoring comparing different methodologies, which consider different spatial an temporal scales, as scoring systems and remote sensing for leaf phenology, in order to define a method that improves the efficiency of monitoring in terms of quality of collected data, subjectivity
carried out in spring 2018 and 2019 .

Methods and results
 sectors. In below tables both the different phenological methods used and the monitored material are reported

Highlights

- Lower altitudinal belts showed to be phenologically synchronised due to similar adaptive traits in similar ecological condition (contact with the Turkey oak higher belt).
 Wood radial increment (presence of enlarging cells - EC) starts with the complete leaf unfolding (Score 5).
Microwave remote sensing from Sentinel 1 proved to be an operative detection tool for leaf unfolding phase (Score 5) with a 2 days temporal accuracy and 10 m geometric resolution.
 monitoring of phenological phases.

